【题目】分解因式:2a3b﹣8ab3=__.
参考答案:
【答案】2ab(a+2b)(a﹣2b).
【解析】
先提公因式再利用平方差公式分解因式即可.
2a3b﹣8ab3,
=2ab(a2﹣4b2),
=2ab(a+2b)(a﹣2b).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,抛物线
经过
,
两点,与
轴相交于点
,连接
.点
为抛物线上一动点,过点
作
轴的垂线
,交直线
于点
,交
轴于点
.

Ⅰ 求抛物线的表达式;
Ⅱ 当
位于
轴右边的抛物线上运动时,过点
作
直线
,
为垂足.当点
运动到何处时,以
,
,
为顶点的三角形与
相似?并求出此时点
的坐标;Ⅲ 如图2,当点
在位于直线
上方的抛物线上运动时,连接
,
.请问
的面积
能否取得最大值?若能,请求出最大面积
,并求出此时点
的坐标;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙三人拿出同样多的钱,合伙订购同种规格的若干件商品.商品买来后,甲、乙分别比丙多拿了12、9件商品,最后结算时,乙付给丙20元,那么,甲应付给丙元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′ ,如图①所示,∠BAB′ =θ,
,我们将这种变换记为[θ,n] .(1)如图①,对△ABC作变换[60°,
]得到△AB′C′ ,则
:
= ;直线BC与直线B′C′所夹的锐角为 度; (2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、
在同一直线上,且四边形ABB′C′为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】按括号内的要求,用四舍五入法,对1022.0099取近似值,其中错误的是( )
A.1022.01(精确到0.01)
B.1.0×103(保留2个有效数字)
C.1022(精确到十位)
D.1022.010(精确到千分位) -
科目: 来源: 题型:
查看答案和解析>>【题目】下列性质中,等腰三角形具有而直角三角形不一定具有的是( )
A.两边之和大于第三边B.有一个角的平分线垂直于这个角的对边
C.有两个锐角的和等于90°D.内角和等于180°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(8,n)在边AB上,反比例函数
(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=
.(1)求反比例函数的解析式和n的值;
(2)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求G点的坐标.

相关试题