【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′ ,如图①所示,∠BAB′ =θ,
,我们将这种变换记为[θ,n] .
(1)如图①,对△ABC作变换[60°,
]得到△AB′C′ ,则
:
= ;直线BC与直线B′C′所夹的锐角为 度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、
在同一直线上,且四边形ABB′C′为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.
![]()
参考答案:
【答案】(1) 3 ; 60°;(2)2;(3)
【解析】试题分析:(1)由旋转与相似的性质,即可得S△AB′C′:S△ABC=3,然后由△ABN与△B′MN中,∠B=∠B′,∠ANB=∠B′NM,可得∠BMB′=∠BAB′,即可求得直线BC与直线B′C′所夹的锐角的度数;
(2)由四边形 ABB′C′是矩形,可得∠BAC′=90°,然后由θ=∠CAC′=∠BAC′-∠BAC,即可求得θ的度数,又由含30°角的直角三角形的性质,即可求得n的值;
(3)由四边形ABB′C′是平行四边形,易求得θ=∠CAC′=∠ACB=72°,又由△ABC∽△B′BA,根据相似三角形的对应边成比例,易得AB2=CBBB′=CB(BC+CB′),继而求得答案.
试题解析:
(1)根据题意得:△ABC∽△AB′C′,
∴S△AB′C′:S△ABC=(
)2=(
)2=3,∠B=∠B′,
∵∠ANB=∠B′NM,
∴∠BMB′=∠BAB′=60°;
(2)∵四边形 ABB′C′是矩形,
∴∠BAC′=90°.
∴θ=∠CAC′=∠BAC′-∠BAC=90-30=60°.
在 Rt△ABB′中,∠ABB'=90°,∠BAB′=60°,
∴∠AB′B=30°,
∴n=
=2;
(3)∵四边形ABB′C′是平行四边形,
∴AC′∥BB′,
又∵∠BAC=36°,
∴θ=∠CAC′=∠AC′B′=72°.
∴∠BB′A=∠BAC=36°,而∠B=∠B,
∴△ABC∽△B′BA,
∴AB:BB′=CB:AB,
∴AB2=CBBB′=CB(BC+CB′),
而CB′=AC=AB=B′C′,BC=1,
∴AB2=1(1+AB),
∴AB=
,
∵AB>0,
∴n=
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将抛物线y=x2先向左平移1个单位,再向下平移2个单位得到的抛物线是( )
A.y=(x+1)2﹣2
B.y=(x﹣1)2+2
C.y=(x﹣1)2﹣2
D.y=(x+1)2+2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法,并回答下列问题:

(1)这两个图形成中心对称吗?如果是对称中心是哪一点?如果不是,请说明理由.
(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图:抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD,
(1)求抛物线的解析式;
(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,写出自变量x的取值范围,并求当x取多少时,S的值最大,最大是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元,已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次采购的数量是第一次采购数量的两倍.
(1)试问去年每吨大蒜的平均价格是多少元?
(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.为出口需要,所有采购的大蒜必须在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半.为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知MN⊥PQ于点O,点A、
是以MN为轴的对称点,而点
、A是以PQ为轴的对称点,求证:点
、
是以点O为对称中心的对称点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为( )

A.6cm
B.(6﹣2
)cm
C.3cm
D.(4
﹣6)cm
相关试题