【题目】在由6个边长为1的小正方形组成的方格中:
(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;
(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明)
![]()
参考答案:
【答案】(1) AB与BC是垂直且相等.(2) 45°.
【解析】
试题(1)如图(1),根据勾股定理,判断出AB2+BC2=AC2,即可推得△ABC是直角三角形,据此判断出AB与BC的关系,并说明理由即可.
(2)如图(2),根据勾股定理,判断出AB2+BC2=AC2,即可推得△ABC是等腰直角三角形,据此求出∠α+∠β的度数是多少即可.
试题解析:
(1)如图(1),连接AC,
,
由勾股定理得,AB2=12+22=5,
BC2=12+22=5,
AC2=12+32=10,
∴AB2+BC2=AC2,AB=BC,
∴△ABC是直角三角形,∠ABC=90°,
∴AB⊥BC
∴AB与BC是垂直且相等.
(2)∠α+∠β=45°.
证明:如图(2),
,
由勾股定理得,AB2=12+22=5,
BC2=12+22=5,
AC2=12+32=10,
∴AB2+BC2=AC2,
∴△ABC是直角三角形,
∵AB=BC,
∴△ABC是等腰直角三角形,
∴∠α+∠β=45°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.

(1)若点D是AC的中点,如图1,求证:AD=CE.
(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论:(提示:过点D作DF∥BC,交AB于点F.)
(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,给予证明;如果不成立,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx+c分别交x轴于A(4,0)、B(﹣1,0),交y轴于点C(0,﹣3),过点A的直线y=﹣
x+3交抛物线于另一点D.
(1)求抛物线的解析式及点D的坐标;
(2)若点P位x轴上的一个动点,点Q在线段AC上,且Q到x轴的距离为
,连接PC、PQ,当△PCQ的周长最小时,求出点P的坐标;
(3)如图2,在(2)的结论下,连接PD,在平面内是否存在△A1P1D1 , 使△A1P1D1≌△APD(点A1、P1、D1的对应点分别是A、P、D,A1P1平行于y轴,点P1在点A1上方),且△A1P1D1的两个顶点恰好落在抛物线上?若存在,请求出点A1的横坐标m,若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】有一个如图所示的长方体的透明鱼缸,假设其长AD=80 cm,高AB=60 cm,水深AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm.一小虫想从鱼缸外的点A处沿缸壁爬到鱼缸内G处吃鱼饵.
(1)小虫应该走怎样的路线才可使爬行的路程最短?请画出它的爬行路线,并用箭头标注;
(2)试求小虫爬行的最短路程.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为( )

A.13
B.19
C.25
D.169 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是( )

A.75°
B.60°
C.54°
D.67.5° -
科目: 来源: 题型:
查看答案和解析>>【题目】如上图所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.则
= . 
相关试题