【题目】已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4
,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.![]()
(1)求AP的长;
(2)求证:点P在∠MON的平分线上.
(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.
①当AB⊥OP时,请直接写出四边形CDEF的周长的值;
②若四边形CDEF的周长用t表示,请直接写出t的取值范围.![]()
参考答案:
【答案】
(1)
解:如图
![]()
过点P作PQ⊥AB于点Q.
∵PA=PB,∠APB=120°,AB=4 ![]()
∴AQ=BQ=2
,∠APQ=60°(等腰三角形的“三线合一”的性质),
在Rt△APQ中,sin∠APQ= ![]()
∴AP=
=
=
=4
(2)
证明:过点P分别作PS⊥OM于点S,PT⊥ON于点T.∴∠OSP=∠OTP=90°(垂直的定义);
在四边形OSPT中,∠SPT=360°﹣∠OSP﹣∠SOB﹣∠OTP=360°﹣90°﹣60°﹣90°=120°,
∴∠APB=∠SPT=120°,∴∠APS=∠BPT;
又∵∠ASP=∠BTP=90°,AP=BP,
∴△APS≌△BPT,
∴PS=PT(全等三角形的对应边相等)
∴点P在∠MON的平分线上;
(3)
解:①∵OP平分∠AOB,∠AOB=60°,OP⊥AB,
∴AQ=BQ=
AB=2
,
∴OQ=
=6,
同理:PQ=
=2,
∴OP=8,
∵点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,
∴CD=EF=
AB,CF=DE=
OP,
∴四边形CDEF的周长为:8+4 ![]()
②CD和EF是△ABO和△ABP的中位线,
则CD=EF=
AB=2
,
CF和DE分别是△AOP和△BOP的中位线,则CF=DE=
OP,
当AB⊥OP时,OP为四点边形AOBP外接圆的直径时,OP最大,其值是8,OP一定大于当点A或B与点O重合时的长度是4.
则4+4
<t≤8+4 ![]()
【解析】(1)过点P作PQ⊥AB于点Q.根据等腰三角形的“三线合一”的性质推知AQ=BQ=
AB,然后在直角三角形中利用特殊角的三角函数的定义可以求得AP的长度;(2)作辅助线PS、PT(过点P分别作PS⊥OM于点S,PT⊥ON于点T)构建全等三角形△APS≌△BPT;然后根据全等三角形的性质推知PS=PT;最后由角平分线的性质推知点P在∠MON的平分线上;(3)利用三角形中位线定理知四边形CDEF的周长的值是OP+AB.①当AB⊥OP时,根据直角三角形中锐角三角函数的定义可以求得OP的长度;②当AB⊥OP时,OP取最大值,即四边形CDEF的周长取最大值;当点A或B与点O重合时,四边形CDEF的周长取最小值.
【考点精析】通过灵活运用角平分线的性质定理和三角形中位线定理,掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.

(1)、求证:四边形BFDE是平行四边形;
(2)、若四边形BFDE是菱形, AB=2,求菱形BFDE的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.

(l)当点C与点O重合时,DE= ;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板的两直角边所在直线分别与直线BC,CD交于点M,N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是__________________;
(2)如图2,若点O在正方形的中心(即两对角线的交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说理)

-
科目: 来源: 题型:
查看答案和解析>>【题目】有如图所示的一块地,已知AD=4米,CD=3米,
,AB=13米,BC=12米.
(1)试判断以点A、点B、点C为顶点的三角形是什么三角形?并说明理由.
(2)求这块地的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,在平面直角坐标系中,点A坐标为(﹣2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段0B于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=﹣
x2+mx+n的图象经过A,C两点. 
(1)求此抛物线的函数表达式;
(2)求证:∠BEF=∠AOE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的(2
+1)倍?若存在,请直接写出点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD//BC,AC=8,BD=6.
(1)求证:四边形ABCD是平行四边形;
(2)若AC⊥BD,求□ABCD的面积.

相关试题