【题目】如图,在数轴上,点A、B分别表示数1、
.
![]()
(1)求
的取值范围;
(2)请你判断数轴上表示数
的点应落在____________,并说明理由.
A.点A的左边 B.线段AB上 C.点B的右边
参考答案:
【答案】(1)x<1;(2)B,理由见解析.
【解析】
(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,解不等式,可得答案;
(2)根据不等式的性质,可得点在A点的右边,根据作差法,可得点在B点的左边.
解:(1)由数轴上的点表示的数右边的总比左边的大,得
-2x+3>1,
解得x<1;
(2)由x<1,得
-x>-1.
-x+2>-1+2,
解得-x+2>1.
数轴上表示数-x+2的点在A点的右边;
作差,得
-2x+3-(-x+2)=-x+1,
由x<1,得
-x>-1,
-x+1>0,
-2x+3-(-x+2)>0,
∴-2x+3>-x+2,
数轴上表示数-x+2的点在B点的左边.
故选:B.
故答案为:(1)x<1;(2)B,理由见解析.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市某农场有A、B两种型号的收割机共20台,每台A型收割机每天可收大麦100亩或者小麦80亩,每台B型收割机每天可收大麦80亩或者小麦60亩,该农场现有19 000亩大麦和11 500亩小麦先后等待收割.先安排这20台收割机全部收割大麦,并且恰好10天时间全部收完.
(1)问A、B两种型号的收割机各多少台?
(2)由于气候影响,要求通过加班方式使每台收割机每天多完成10%的收割量,问这20台收割机能否在一周时间内完成全部小麦收割任务?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.
(1)求证:BE=AD;并用含α的式子表示∠AMB的度数;
(2)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD,如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为16
米,加固后大坝的横截面为梯形ABED,CE的长为8米.
(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?
(2)求加固后的大坝背水坡面DE的坡度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD为∠CAF的角平分线,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有( )

A. 4个 B. 3个 C. 2个 D. 1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径.
(1)判断BC与⊙O的位置关系,并证明你的结论;
(2)求证:△ABD∽△DBE;
(3)若cosB=
,AE=4,求CD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,∠ABC、∠ADC的平分线分別交CD、AB上点E、F.

(1)若∠ABC=∠ADC,求征:∠ADF=∠ABE;
(2)如图,若∠A与∠C互朴,试探究∠ADF与∠ABE之同的数量夫系,并说明理由;

(3)如图,在(2)的条件下,当DA⊥AB时,试探究BE与DF的位置关系,并说明理由.

相关试题