【题目】如图,已知等腰△ABC的底边BC=13cm,D是腰AB上一点,且CD=12cm, BD=5cm.
(1)求证:△BDC是直角三角形;
(2)求△ABC的周长
![]()
参考答案:
【答案】(1)证明见解析;(2)△ABC的周长为
.
【解析】
(1)由BC=13cm,CD=12cm,BD=5cm,知道BC2=BD2+CD2,所以△BDC为直角三角形,
(2)由(1)可求出AC的长,周长即可求出.
(1)证明:∵BC=13cm,CD=12cm,BD=5cm,
∴BC2=BD2+CD2
∴△BDC为直角三角形;
(2)解:设AB=x,
∵△ABC是等腰三角形,
∴AB=AC=x,
∵AC2=AD2+CD2
x2=(x﹣5)2+122,
解得:x=
,
∴△ABC的周长=2AB+BC=2×
+13=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)

(2)704×696
(3)

(4)
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,纸上有5个边长为1的小正方形组成的纸片.可以用下面的方法把它剪拼成一个正方形.
(1)拼成的正方形的面积是多少,边长是多少.
(2)你能在3×3的正方形方格图3中,连接四个点组成面积为5的正方形吗?
(3)如图4,你能把这十个小正方形组成的图形纸,剪开并拼成一个大正方形吗?若能,请画出示意图,并写出边长为多少.

-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下列证明:
如图,已知AD⊥BC,EF⊥BC,∠1=∠2.

求证:DG∥BA.
证明:∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=∠ADB=90°( )
∴EF∥AD( )
∴∠1=∠BAD( )
又∵∠1=∠2(已知)
∴ (等量代换)
∴DG∥BA.( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°.

(1)求证:DC//AB.
(2)求∠AFE的大小
-
科目: 来源: 题型:
查看答案和解析>>【题目】下表是橘子的销售额随橘子卖出质量的变化表:
质量/千克
1
2
3
4
5
6
7
8
9
…
销售额/元
2
4
6
8
10
12
14
16
18
…
(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当橘子卖出5千克时,销售额是_______元.
(3)如果用
表示橘子卖出的质量,
表示销售额,按表中给出的关系,
与
之间的关系式为______.(4)当橘子的销售额是100元时,共卖出多少千克橘子?
-
科目: 来源: 题型:
查看答案和解析>>【题目】由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是( )

A.主视图的面积最小
B.左视图的面积最小
C.俯视图的面积最
D.三个视图的面积相等
相关试题