【题目】如图,等腰直角△ABC中,∠BAC=90°,BC=6,过点C作CD⊥BC,CD=2,连接BD,过点C作CE⊥BD,垂足为E,连接AE,则AE长为_____.
![]()
参考答案:
【答案】![]()
【解析】根据旋转的性质得到△ABF≌△ACE,进而得出△AEF为等腰直角三角形,根据两角对应相等的两三角形相似的判定可得△BCD∽△BEC,然后根据对应边成比例可得
,然后根据勾股定理即可求解.
把AE逆时针旋转90°,使AE=AF交BD于F,
根据旋转的性质可得△ABF≌△ACE,
即BF=CE,
∴△AEF是等腰直角三角形
∵CD⊥BC,CE⊥BD
∴∠BCD=∠CEB=90°
∵∠DBC=∠CBD,
∴△BCD∽△BEC
∴
∵BC=6,CD=2
∴BD=
=
即CE=
∴DE=
即BE=![]()
∴EF=
—
—
=
∴AE=AF=![]()
故答案为:
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;
(2)设∠BAC=
,∠DCE=
.① 如图2,当点D在线段CB上,∠BAC≠90°时,请你探究
与
之间的数量关系,并证明你的结论;② 如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时
与
之间的数量关系(不需证明).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=8,BC=6.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )

A. 2
B. 3
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边三角形ABC中,AB=5,在AB边上有一点P,过点P作PM⊥BC,垂足为M,过点M作MN⊥AC,垂足为N,过点N作NQ⊥AB,垂足为Q.当PQ=1时,BP=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线的不等式为y=﹣x2+6x+c.
(1)若抛物线与x轴有交点,求c的取值范围;
(2)设抛物线与x轴两个交点的横坐标分别为x1 , x2 . 若x12+x22=26,求c的值.
(3)若P,Q是抛物线上位于第一象限的不同两点,PA,QB都垂直于x轴,垂足分别为A,B,且△OPA与△OQB全等.求证:c>﹣
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.

相关试题