【题目】如图,点A(1,6)和点M(m,n)都在反比例函数y=
(x>0)的图象上,![]()
(1)k的值为;
(2)当m=3,求直线AM的解析式;
(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.
参考答案:
【答案】
(1)6
(2)
解:将x=3代入反比例解析式y=
得:y=2,即M(3,2),
设直线AM解析式为y=ax+b,
把A与M代入得:
,
解得:a=﹣2,b=8,
∴直线AM解析式为y=﹣2x+8;
(3)
解:直线BP与直线AM的位置关系为平行,理由为:
当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,
∵A(1,6),M(m,n),且mn=6,即n=
,
∴B(0,6),P(m,0),
∴k直线AM=
=
=
=﹣
=﹣
,
k直线BP=
=﹣
,
即k直线AM=k直线BP,
则BP∥AM.
![]()
【解析】解:(1)将A(1,6)代入反比例解析式得:k=6;
所以答案是:6;
【考点精析】通过灵活运用反比例函数的概念和反比例函数的图象,掌握形如y=k/x(k为常数,k≠0)的函数称为反比例函数.自变量x的取值范围是x不等于0的一切实数,函数的取值范围也是一切非零实数;反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=
AC. 
(1)求∠ACB的度数;
(2)若AC=8,求△ABF的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.
(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?
(2)试比较立体图中
与平面展开图中
的大小关系?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是( )

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.

(1)当t=时,△PQR的边QR经过点B;
(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;
(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(7,0),C(0,4),点D的坐标为(5,0),点P在BC边上运动. 当△ODP是腰长为5的等腰三角形时,点P的坐标为______________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )

A.4个
B.3个
C.2个
D.1个
相关试题