【题目】如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;
(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.
![]()
参考答案:
【答案】(1)y=-x2+x-4,顶点坐标(,);(2)S=-2x2+14x-12;(3)不能.
【解析】
试题分析:(1)根据对称轴,以及A、B坐标可求得解析式,进而可求顶点坐标;(2)根据平行四边形的面积公式,可得函数解析式;(3)根据函数值,可得E点坐标,根据菱形的判定,可得答案.
试题解析:(1)设抛物线的解析式为y=ax2+bx+c,将A、B点的坐标代入函数解析式,得
,解得
,抛物线的解析式为y=- x2+x-4=﹣(x﹣)2+,∴解析式为y=-x2+x-4,顶点坐标(,);(2)E点坐标为(x,-x2+x-4),S=2×OAyE=3(-x2+x-4),即S=﹣2x2+14x﹣12;
(3)平行四边形OEAF的面积为24时,平行四边形OEAF不能为菱形,理由如下:当平行四边形OEAF的面积为24时,即﹣2x2+14x﹣12=24,x2﹣7x+18=0,∴△=b2﹣4ac=(﹣7)2﹣4×18=﹣23<0,方程无解,
E点不存在,平行四边形OEAF的面积为24时,平行四边形OEAF不能为菱形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知多项式mx5+nx3+px﹣7=y,当x=﹣2时,y=5,当x=2时,求y的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.
(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;
(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;
(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?
(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】港珠澳大桥总投资 1100 亿,那么 1100 用科学记数法表示为( )
A.1.1×103B.1.1×104C.11×102D.0.11×104
-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形具有而一般平行四边形不一定具有的性质是( )
A. 对角线相等 B. 对角相等 C. 对角线互相平分 D. 对边相等
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.
①写出点M′的坐标;
②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算中,正确的是( )
A.(x2)3=x5B.x2+2x3=3x5C.(﹣ab)3=a3bD.x3x3=x6
相关试题