【题目】如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.
①写出点M′的坐标;
②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).
![]()
参考答案:
【答案】(1)y=﹣x2+2x+3;(2)S=-m2+m,最大值为;(3)①(,),②45°.
【解析】
试题分析:(1)先求出B点坐标,再把B点坐标代入即可求二次函数解析式;(2)根据M的位置可确定0<m<3,过点M作ME⊥y轴于点E,交AB于点D,可设M的坐标为(m,﹣m2+2m+3),用含m的式子表示DM,然后求出S与m的函数关系式,最大值也可求出.(3)①把m=代入二次函数解析式,可求出M′的坐标,②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,则BF=d1+d2,当BF最大时可求出旋转角.
试题解析: (1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,
∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)当y=0时,0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∴0<m<3,过点M作ME⊥y轴于点E,交AB于点D,由题意知:M的坐标为(m,﹣m2+2m+3),∴D的纵坐标为:﹣m2+2m+3,∴把y=﹣m2+2m+3代入y=﹣3x+3,∴x=
,∴D的坐标为(
,﹣m2+2m+3),∴DM=m﹣
=
,∴S=DMOB=×
×3=-m2+m=-(m-)2+,S最大值为;(3)①由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F根据题意知:d1+d2=BF,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧BM′H上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=
,M′A=
,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴ ﹣(﹣x)2=﹣x2,∴x=
,
cos∠M′BG=
,∵l1∥l′,∴∠BCA=90°,∠BAC=45°.
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】港珠澳大桥总投资 1100 亿,那么 1100 用科学记数法表示为( )
A.1.1×103B.1.1×104C.11×102D.0.11×104
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;
(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形具有而一般平行四边形不一定具有的性质是( )
A. 对角线相等 B. 对角相等 C. 对角线互相平分 D. 对边相等
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算中,正确的是( )
A.(x2)3=x5B.x2+2x3=3x5C.(﹣ab)3=a3bD.x3x3=x6
-
科目: 来源: 题型:
查看答案和解析>>【题目】点A(﹣3,y1),B(0,y2),C(3,y3)是二次函数y=﹣(x+2)2+m图象上的三点,则y1,y2,y3的大小关系是( )
A.y1<y2<y3B.y1=y3<y2C.y3<y2<y1D.y1<y3<y2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB、CD相交于点O,∠BOC=80°,OE是∠BOC的角平分线,OF是OE的反向延长线.
(1)求∠2、∠3的度数;
(2)说明OF平分∠AOD的理由.

相关试题