【题目】如图,已知矩形ABCD中,AB=4,E是BC上一点,将△CDE沿直线DE折叠后,点C落在点C′处,连接C′E交AD于点F,若BE=2,F为AD的中点,则AD的长为 . ![]()
参考答案:
【答案】10
【解析】解:设AD=x,
∵F为AD的中点,
∴DF=
AD=
x,
∵AD∥BC,
∴∠DEC=∠FDE,又∠FED=∠DEC,
∴∠FED=∠FDE,
∴FE=DF=
x,
由翻折变换的性质可知,EC′=EC=x﹣2,C′D=CD=4,
∴C′F=x﹣2﹣
x=
x﹣2,
由勾股定理得,C′F2+C′D2=DF2 , 即(
x﹣2)2+42=(
x)2 ,
解得,x=10,
∴AD的长为10.
所以答案是:10.
【考点精析】通过灵活运用翻折变换(折叠问题),掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正比例函数图象经过点(-1,2).
(1)求此正比例函数的表达式;
(2)画出这个函数图象;
(3)点(2,-5)是否在此函数图象上?
(4)若这个图象还经过点A(a,8),求点A的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD相交于点O,OA平分∠EOC.

(1)若∠EOC=70°,求∠BOD的度数;
(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A是双曲线y=
(x>0)上一点,过点A作AB∥y轴,交双曲线y=﹣
(x>0)于点B,过点B作BC⊥AB交y轴于点C,连接AC,则△ABC的面积为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,OE,OD分别平分∠AOC和∠BOC,
(1)如果∠AOB=90°,∠BOC=38°,求∠DOE的度数;
(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;
(3)从(1)、(2)的结果中,你发现了什么规律,请写出来.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)
(1)写出y与x之间的函数解析式;
(2)画出此函数的图象.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.

相关试题