【题目】如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.
![]()
(1)求证:AD=AF;
(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.
参考答案:
【答案】(1)见解析;
(2)四边形ADCF是正方形.
【解析】
试题分析:(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AD=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=
BC,即可证得:AD=AF;
(2)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形.
试题解析:(1)∵AF∥BC,
∴∠EAF=∠EDB,
∵E是AD的中点,
∴AE=DE,
在△AEF和△DEB中,
∠EAF=∠EDB,AE=DE,∠AEF=∠DEB,
∴△AEF≌△DEB(ASA),
∴AF=BD,
∵在△ABC中,∠BAC=90°,AD是中线,
∴AD=BD=DC=
BC,
∴AD=AF;
(2)四边形ADCF是正方形.
∵AF=BD=DC,AF∥BC,
∴四边形ADCF是平行四边形,
∵AB=AC,AD是中线,
∴AD⊥BC,
∵AD=AF,
∴四边形ADCF是正方形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,甲、乙两人沿相同的路线由A到B行进,他们行进的路程与出发后的时间(h)之间的函数图象如图所示,根据图象信息,图中的折线PQR和线段MN分别表示甲乙所行驶的路程S和时间t的关系.
根据图象回答下列问题:
(1)A、B两地相距多远?
(2)甲和乙哪一个早到达B城?早多长时间?
(3)甲在QR段的速度是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在平行四边形ABCD中,对角线AC与BD交于点O,过点O的直线EF分别与AD、BC交于点E、F,EF⊥AC,连结AF、CE.
(1)求证:OE=OF;
(2)请判断四边形AECF是什么特殊四边形,请证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A:(1,0).A
(1,-1),A
(-1,-l).A
(-1, 1), A
(2, 1),...则点A
的坐标是( )
A.(506,505)B.(-505,-505)C.(505,-505)D.(-505,505)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a.b.c满足关系式
,c是64的算术平方根.(1)直接写出a,b,c的值:a=____,b=____,c= ____;
(2)如果在第二象限内有一点P(m,2),请用含m的式子表示四边形APOB的面积S
;(3)在(2)的条件下,是否存在点P,使四边形APOB的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.

(1)求y与x的函数关系式;
(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(-3,4).
(1)求AO的长;
(2)求直线AC的解析式和点M的坐标;
(3)如图2,点P从点A出发,以每秒2个单位的速度沿折线A-B-C运动,到达点C终止.设点P的运动时间为t秒,△PMB的面积为S.
①求S与t的函数关系式;
②求S的最大值.

图1 图2
相关试题