【题目】如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.
(1)求证:BD=CE;
(2)若AD=BD=DE,求∠BAC的度数.
![]()
参考答案:
【答案】(1)见解析;(2)∠BAC=120°.
【解析】
(1)作AF⊥BC于点F,利用等腰三角形三线合一的性质得到BF=CF,DF=EF,相减后即可得到正确的结论.
(2)根据等边三角形的判定得到△ADE是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.
(1)过点A作AF⊥BC于F.
![]()
∵AB=AC,AD=AE.
∴BF=CF,DF=EF.
∴BD=CE.
(2)∵AD=DE=AE
∴△ADE是等边三角形,
∴∠DAE=∠ADE=60°.
∵AD=BD,
∴∠DAB=∠DBA.
∴∠DAB=
∠ADE=30°.
同理可求得∠EAC=30°,
∴∠BAC=120°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们已经知道,有一个内角是直角的三角形.其中直角所在的两条边叫直角边,直角所对的边叫斜边.数学家已发现在一个直角三角形中,两条直角边边长的平方和等于斜边长的平方.如果设直角三角形的两条直角边长度分别是
和
,斜边长度是
,那么可以用数学语言表达为:
.(1)在图中,若
,
,则
等于多少;(2)观察图,利用面积与代数恒等式的关系,试说明
的正确性.其中两个相同的直角三角形边
、
在一条直线上;(3)如图③所示,折叠长方形
的一边
,使点
落在
边的点
处,已知
,
,利用上面的结论求的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,AB∥DE,AC∥DF,AC=DF下列条件中,不能判断△ABC≌△DEF的是( )

A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.

A.1 B.2 C.3 D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:用3辆A型车和2辆B型车载满货物一次可运货共19吨;用2辆A型车和3辆B型车载满货物一次可运货共21吨.
(1)1辆A型车和1辆B型车都载满货物一次分别可以运货多少吨?
(2)某物流公司现有49吨货物,计划同时租用A型车
辆,B型车
辆,一次运完,且恰好每辆车都载满货物.①求
、
的值;②若A型车每辆需租金130元/次,B型车每辆需租金200元/次.请求出租车费用最少是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】解不等式组
,并把解集在数轴上表示出来.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解:
在解形如3|x-2|=|x-2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:
①当x<2时,原方程可化为-3(x-2)=-(x-2)+4,解得:x=0,符合x<2
②当x≥2时,原方程可化为3(x-2)=(x-2)+4,解得:x=4,符合x≥2
∴原方程的解为:x=0,x=4.
解题回顾:本题中2为x-2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.
知识迁移:
(1)运用整体思想先求|x-3|的值,再去绝对值符号的方法解方程:|x-3|+8=3|x-3|;
知识应用:
(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2-x|-3|x+1|=x-9.
(提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?)
相关试题