【题目】如图,抛物线y=ax2+bx经过A(4,0),B(1,3)两点,点B、C关于抛物线的对称轴l对称,过点B作直线BH⊥x轴,交x轴于点H.![]()
(1)求抛物线的解析式;
(2)若点M在直线BH上运动,点N在x轴上运动,是否存在这样的点M、N,使得以点M为直角顶点的△CNM是等腰直角三角形?若存在,请求出点M、N的坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,
得 ![]()
解得:
,
∴y=﹣x2+4x
(2)
解:∵抛物线y=﹣x2+4x的对称轴为x=2,
又点B的坐标为(1,3),点B、C关于抛物线的对称轴对称,
∴点C的坐标为(3,3).
假设存在这样的点M、N,使得以点M为直角顶点的△CNM是等腰直角三角形.
①当M在x轴上方时,如图1
,
∵∠CMB+∠HMN=90°,∠HMN+∠HNM=90°,
∴∠CMB=∠MNH.
在△CBM和△MHN中
,
△CBM≌△MHN(AAS),
∴BC=MH=2,BM=HN=3﹣2=1,
∴M(1,2),N(2,0).
②M在x轴下方时,如图2
,
∵∠CMB+∠HMN=90°,∠HMN+∠HNM=90°,
∴∠CMB=∠MNH.
在△CBM和△MHN中
,
△CBM≌△MHN(AAS),
∴HM=CB=2,HN=MB=2+3=5,
∴M(1,﹣2),N(﹣4,0).
综上所述,存在这样的点M(1,2),N(2,0)或M(1,﹣2),N(﹣4,0)使得以点M为直角顶点的△CNM是等腰直角三角形
【解析】(1)根据待定系数法,可得函数解析式;(2)根据全等三角形的判定与性质,可得MH,HN的值,根据点的坐标,可得答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上运动,点A在数轴上表示的数是-12,点D在数轴上表示的数是15.
(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________,线段BC的长=________;
(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,当BC=6(单位长度),求t的值;
(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将一幅三角板摆放在一起.
(1)∠AOC的度数为________,射线OA 、OB、OC组成所有小于平角的和为________;
(2)反向延长射线OA 到D,OE为∠BOD的平分线,OF为∠COD的平分线,请按题意画出图形,并求出∠EOF的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A的坐标为(4,0),点B从原点出发,沿y轴负方向以每秒1个单位长度的速度运动,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBE,等腰Rt△ABF,连结EF交y轴于P点,当点B在y轴上运动时,经过t秒时,点E的坐标是_____(用含t的代数式表示),PB的长是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点A(1,1),B(4,3),将点A向左平移2个单位长度,再向上平移3个单位长度得到点C.
(1)写出点C的坐标;
(2)画出△ABC并判断△ABC的形状.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,长方形OABC的边OC=2,将过点B的直线y=x﹣3与x轴交于点E.
(1)求点B的坐标;
(2)连结CE,求线段CE的长;
(3)若点P在线段CB上且OP=
,求P点坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=50°时,求∠DEF的度数;
(3)若∠A=∠DEF,判断△DEF是否为等腰直角三角形.

相关试题