【题目】已知x1,x2是关于x的一元二次方程
的两实数根.
(1)求m的范围;
(2)若
,求m的值;
(3)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.
参考答案:
【答案】(1)m≥2;(2)m的值为6;(3)这个三角形的周长为17.
【解析】
(1)根据一元二次方程的判别式与根的关系可得△≥0,解不等式即可得出m的取值范围;
(2)根据一元二次方程根与系数的关系可得出x1+x2和x1x2的值,代入
可得关于m的方程,解方程求出m的值即可;
(3)分7为腰和底边两种情况,分别根据一元二次方程的解的定义及一元二次方程根的判别式求出m的值,可得出三角形的三边长,根据三角形的三边关系即可求出三角形的周长.
(1)∵关于x的一元二次方程
有两实数根,
∴△=4(m+1)2-4(m2+5)=8m-16≥0,
解得:m≥2.
(2)∵x1,x2是关于x的一元二次方程
的两实数根.
∴x1+x2=2(m+1),x1x2=m2+5,
∵(x1-1)(x2 -1)=28,即x1x2-(x1+x2)+1=28,
∴m2+5-2(m+1)+1=28,
整理得:m2-2m-24=0,解得m1=6,m2=-4,
由(1)得m≥2,
∴m的值为6.
(3)①当7为腰时,则x1、x2中有一个为7,设x1=7,
把x1=7代入方程得:49-14(m+1)+m2+5=0,
整理得m2-14m+40=0,
解得m1=10,m2=4,
当m=10时,x1+x2=2(m+1)=22,
解得:x2=15,
∵7+7<15,
∴不能构成三角形,故舍去;
当m=4时,x1+x2=2(m+1)=10,
解得:x2=3,
∴三角形周长为3+7+7=17;
②当7为底边时,则x1=x2,
∴△=8m-16=0,
解得:m=2,
∴方程化为x2-6x+9=0,解得x1=x2=3,
∵3+3<7,
∴不能构成三角形,故舍去,
∴这个三角形的周长为17.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2019OB2019,则点A2019的坐标为_______ .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D在边BC上,∠C+∠BAD=∠DAC,过D作DE⊥AB于E,
,则线段AC的长为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是一块破损的木板.
(1)请你设计一种方案,检验木板的两条直线边缘 AB、CD 是否平行;
(2)若 AB∥CD,连接 BC,过点 A 作 AM⊥BC 于 M,垂足为 M,画出图形,并写出∠BCD 与∠BAM 的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:善于思考的小明在解方程组
时,采用了一种“整体代换”的解法,解法如下:解:将方程②8x+20y+2y=10,变形为 2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,则 y=﹣1;把 y=﹣1 代入①得,x=4,所以方程组的解为:
请你解决以下问题:(1)试用小明的“整体代换”的方法解方程组

(2)已知 x、y、z,满足
试求 z 的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图 1,AM∥CN,点 B 为平面内一点,AB⊥BC 于 B,过 B 作 BD⊥ AM.
(1)求证:∠ABD=∠C;
(2)如图 2,在(1)问的条件下,分别作∠ABD、∠DBC 的平分线交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,
①求证:∠ABF=∠AFB;
②求∠CBE 的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某市为提倡节约用水,准备实行自来水阶梯计算方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为了更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:
(1)此次抽样调查的样本容量是___________
(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.
(3)如果自来水公司将基本用水量定为每户25吨,那么该地区10万用户中约有多少用户的用水全部享受基本价格?

相关试题