【题目】如图是一个多面体的表面展开图,每个面上都标注了字母(字母在多面体的外表面),请根据要求回答问题.
![]()
(1)如果D面在多面体的左面,那么F面在哪里?
(2)B面和哪一面是相对的面?
(3)如果C面在前面,从上面看到的是D面,那么从左面能看到哪一面?
参考答案:
【答案】(1)D面在左面,所以F面在右面.(2)B面和E面是相对的面.(3)C面在前面,从上面看到的是D面,所以从左面能看到B面.
【解析】
利用长方体及其表面展开图的特点解题.这是一个正方体的平面展开图,共有六个面,其中面“A”与面“C”相对,面“B”与面“E”相对,“D”与面“F”相对.
解:这是一个正方体的平面展开图,共有六个面,其中面“A”与面“C”相对,面“B”与面“E”相对,“D”与面“F”相对.则
(1)∵面“D”与面“F”相对,∴D面是长方体的左面时,F面在右面;
(2)由图可知,B面和E面是相对的面;
(3)由图可知,C面在前面,从上面看到的是D面,所以从左面能看到B面.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.

(1)该公司在全市一共投放了 万辆共享单车;
(2)在扇形统计图中,B区所对应扇形的圆心角为 °;
(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C区共享单车的使用量并补全条形统计图.
-
科目: 来源: 题型:
查看答案和解析>>【题目】像(
+2)(
﹣2)=1、
=a(a≥0)、(
+1)(
﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,
与
,
+1与
﹣1,2
+3
与2
﹣3
等都是互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:
;(2)计算:
;(3)比较
与
的大小,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,AB⊥AC,AB=2,AC=4.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转α°,分别交直线BC、AD于点E、F.

(1)当α= °,四边形ABEF是平行四边形;
(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形.
①α= °,构造的四边形是菱形;
②若构造的四边形是矩形,求出该矩形的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.
(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)
(2)当每辆车的日租金为多少元时,每天的净收入最多? -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解:
如图①,在平面直角坐标系中,若已知点A(xA,yA)和点C(xC,yC),点M为线段AC的中点,利用三角形全等的知识,有△AMP≌△CMQ,则有PM=MQ,PA=QC,即xM﹣xA=xC﹣xM,yA﹣yM=yM﹣yC,从而有
,即中点M的坐标为(
,
).
基本知识:
(1)如图①,若A、C点的坐标分别A(﹣1,3)、C(3,﹣1),求AC中点M的坐标;
方法提炼:
(2)如图②,在平面直角坐标系中,ABCD的顶点A、B、C的坐标分别为(﹣1,5)、(﹣2,2)、(3,3),求点D的坐标;
(3)如图③,点A是反比例函数y=
(x>0)上的动点,过点A作AB∥x轴,AC∥y轴,分别交函数y═
(x>0)的图象于点B、C,点D是直线y=2x上的动点,请探索在点A运动过程中,以A、B、C、D为顶点的四边形能否为平行四边形,若能,求出此时点A的坐标;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.

(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=
AC;
(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3
时,求旋转角的大小并指明旋转方向.
相关试题