【题目】已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点. ![]()
(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明).
参考答案:
【答案】
(1)证明:∵四边形ABCD是矩形,
∴AB=CD,∠A=∠D=90°,
又∵M是AD的中点,
∴AM=DM.
在△ABM和△DCM中,
,
∴△ABM≌△DCM(SAS)
(2)解:四边形MENF是菱形.
证明如下:
∵E,F,N分别是BM,CM,CB的中点,
∴NE∥MF,NE=MF.
∴四边形MENF是平行四边形.
由(1),得BM=CM,∴ME=MF.
∴四边形MENF是菱形
(3)2:1
【解析】(3)解: 当AD:AB=2:1时,四边形MENF是正方形.理由:
∵M为AD中点,
∴AD=2AM.
∵AD:AB=2:1,
∴AM=AB.
∵∠A=90,
∴∠ABM=∠AMB=45°.
同理∠DMC=45°,
∴∠EMF=180°﹣45°﹣45°=90°.
∵四边形MENF是菱形,
∴菱形MENF是正方形.
故答案为:2:1.
(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列关于x的单项式,探究其规律:x2,3x4,5x6,7x8,9x10,11x12,…,按照上述规律,第2019个单项式是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.

(1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形的内角和是
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.

(1)求证:
~△ADB;(2) 求
的值; (3)延长BC至F,连接FD,使
的面积等于
,求证:DF与⊙O相切。 -
科目: 来源: 题型:
查看答案和解析>>【题目】甲数比乙数的2倍大3,若乙数为x,则甲数为
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果二次函数y=x2﹣mx+m+1的图象经过原点,那么m的值是 .
相关试题