【题目】如图,AB=AD,AC=AE,BC=DE,点E在BC上.
![]()
(1)求证:△ABC≌△ADE;(2)求证:∠EAC=∠DEB.
参考答案:
【答案】(1)见解析;(2)见解析.
【解析】
(1)用“SSS”证明即可;
(2)借助全等三角形的性质及角的和差求出∠DAB=∠EAC,再利用三角形内角和定理求出∠DEB=∠DAB,即可说明∠EAC=∠DEB.
解:(1)∵AB=AD,AC=AE,BC=DE,
∴△ABC≌△ADE(SSS);
(2)由△ABC≌△ADE,
则∠D=∠B,∠DAE=∠BAC.
∴∠DAE﹣∠ABE=∠BAC﹣∠BAE,即∠DAB=∠EAC.
设AB和DE交于点O,∵∠DOA=BOE,∠D=∠B,
∴∠DEB=∠DAB.
∴∠EAC=∠DEB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某建筑物BC顶部有一旗杆AB,且点A、B、C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).(参考数据:tan47°≈1.07,tan42°≈0.90)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
(1)经过多长时间,四边形PQCD是平行四边形?
(2)经过多长时间,四边形PQBA是矩形?
(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A、C,PC交AB的延长线于点D.DE⊥PO交PO的延长线于点E.
(1)求证:∠EPD=∠EDO;
(2)若PC=6,tan∠PDA=
,求OE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:
(1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;
(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;
(3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;
已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(
取1.732,结果保留整数)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从A点出发,沿A→D→C→B匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
⑴①AD= , CD= , BC= ; (填空)
②当点P运动的路程x=8时,△ABP的面积为y= ; (填空)
⑵求四边形ABCD的面积

图1 图2
相关试题