【题目】如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A、C,PC交AB的延长线于点D.DE⊥PO交PO的延长线于点E.
(1)求证:∠EPD=∠EDO;
(2)若PC=6,tan∠PDA=
,求OE的长.
![]()
参考答案:
【答案】(1)证明见解析;(2) OE=
.
【解析】试题分析:(1)根据切线长定理和切线的性质即可证明:∠EPD=∠EDO;
(2)连接OC,利用tan∠PDA=
,可求出CD=4,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.
试题解析:(1)证明:PA,PC与⊙O分别相切于点A,C,
∴∠APO=∠EPD且PA⊥AO,
∴∠PAO=90°,
∵∠AOP=∠EOD,∠PAO=∠E=90°,
∴∠APO=∠EDO,
∴∠EPD=∠EDO;
(2)解:连接OC,
![]()
∴PA=PC=6,
∵tan∠PDA=
,
∴在Rt△PAD中,AD=8,PD=10,
∴CD=4,
∵tan∠PDA=
,
∴在Rt△OCD中,OC=OA=3,OD=5,
∵∠EPD=∠ODE,
∴△OED∽△DEP,
∴
,
∴DE=2OE
在Rt△OED中,OE2+DE2=OD2,即5OE2=52,
∴OE=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某建筑物BC顶部有一旗杆AB,且点A、B、C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).(参考数据:tan47°≈1.07,tan42°≈0.90)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
(1)经过多长时间,四边形PQCD是平行四边形?
(2)经过多长时间,四边形PQBA是矩形?
(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB=AD,AC=AE,BC=DE,点E在BC上.

(1)求证:△ABC≌△ADE;(2)求证:∠EAC=∠DEB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:
(1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;
(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;
(3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;
已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(
取1.732,结果保留整数)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从A点出发,沿A→D→C→B匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
⑴①AD= , CD= , BC= ; (填空)
②当点P运动的路程x=8时,△ABP的面积为y= ; (填空)
⑵求四边形ABCD的面积

图1 图2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则( )

A.点B到AO的距离为sin54°
B.点B到AO的距离为tan36°
C.点A到OC的距离为sin36°sin54°
D.点A到OC的距离为cos36°sin54°
相关试题