【题目】已知实数x、y满足2x+3y=1.
(1)用含有x的代数式表示y;
(2)若实数y满足y>1,求x的取值范围;
(3)若实数x、y满足x>﹣1,y≥﹣
,且2x﹣3y=k,求k的取值范围.
参考答案:
【答案】(1)y=
;(2)x<﹣1;(3)﹣5<k≤4.
【解析】【试题分析】
(1)解关于y的一元一次方程即可;
(2)根据y>1,将(1)中的式子列成不等式即可;
(3)先解关于x、y的方程组
,再根据x>﹣1,y≥﹣
,列不等式组即可.
【试题解析】
(1)2x+3y=1,
3y=1﹣2x,
y=
;
(2)y=
>1,
解得:x<﹣1,
即若实数y满足y>1,x的取值范围是x<﹣1;
(3)联立2x+3y=1和2x﹣3y=k得:
,
解方程组得:
,
由题意得:
,
解得:﹣5<k≤4.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市某中学为了解该校学生对四种国家一级保护动物的喜爱情况,围绕“在丹顶鹤、大熊猫、滇金丝猴、藏羚羊四种国家一级保护动物中,你最喜欢哪一种动物?(必选且只选一种)”这一问题,在全校范围内随机抽取部分同学进行问卷调查.根据调查结果绘制成如下不完整的条形统计图.其中最喜欢丹顶鹤的学生人数占被抽取人数的16%;请你根据以上信息解答下列问题:

(1)在这次调查中,一共抽取了多少名学生?
(2)求在被调查的学生中,最喜欢滇金丝猴的学生有多少名?并补全条形统计图;
(3)如果全校有1200名学生,请你估计全校最喜欢大熊猫的学生有多少名? -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠C=90°,D是AC的中点,E是AB的中点,作EF⊥BC于F,延长BC至G,使CG=BF,连接CE、DE、DG.
(1)如图1,求证:四边形CEDG是平行四边形
;
(2)如图2,连接EG交AC于点H,若EG⊥AB,请直接写出图2中所有长度等于
GH的线段. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为美化校园,计划对面积为1800平方米的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400平方米区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少平方米?
(2)若学校每天付给乙队的绿化费用是0.25万元,每天付给甲队的绿化费用比乙队多60%,要使这次学校付给甲、乙两队的绿化总费用不超过8万元,至少应安排甲队工作多少天? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,⊙O的两条弦AB、CD相交于点E,
(1)如图1,若BE=DE,求证:
=
; 
(2)如图2,在(1)的条件下,连接OC,AP为⊙O的直径,PQ为⊙O的弦,且PQ∥AB,求证:∠OCD=∠APQ;
(3)如图3,在(2)的条件下,连接BD分别与OA、OC交于点G、H,连接DQ,设CD与AP交于点F, 若PQ=2CF,BH=5GH,DQ=4,求⊙O的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查,榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.
(1)榕树和香樟树的单价各是多少?
(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算该校本次购买榕树和香樟树共有哪几种方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,直线 AB 分别交 x 轴、y 轴于点A(a,0)点 B(0,b),且a、b满足a2+4a+4+|2a+b|=0
(1)a= ;b= .
(2)点 P 在直线AB的右侧,且∠APB=45°
①若点P在x轴上,则点P的坐标为 ;
②若△ABP 为直角三角形,求点P的坐标;
(2)如图2,在(2)的条件下,点P在第四象限,∠BAP=90°,AP与y轴交于点M,BP与x轴交于点N,连接MN,求证:MP平分△BMN的一个外角.

相关试题