【题目】如图,现有一个均匀的转盘被平均分成六等份,分别标有
这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字(当指针恰好指在分界线上时,不记,重转).
(1)转动转盘,转出的数字大于
的概率是多少;
(2)现有两张分别写有
和
的卡片,要随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.
①这三条线段能构成三角形的概率是多少?
②这三条线段能构成等腰三角形的概率是多少?(注:要求写出各种可能情况)
![]()
参考答案:
【答案】(1)
;(2)①
,②
,可能性见解析
【解析】
(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,由概率公式可得;
(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,由概率公式可得;
②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,由概率公式可得;
解:(1)平均分成
份,共有
种情况,大于
的有
种:![]()
(大于
)=![]()
(2)解:①平均分成
份,共有
种情况,能构成三角形的结果有
种,
![]()
(构成
)=![]()
②平均分成
份,转到每个数字的可能性相等共
种,能够构成等腰三角形的有2种情况,分别是(
)和(
)
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知数轴上点
表示的数为8,
是数轴上位于点
左侧一点,且
,动点
从
点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为
秒.(1)数轴上点
表示的数是___________;点
表示的数是___________(用含
的代数式表示)(2)动点
从点
出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点
同时出发,问多少秒时
之间的距离恰好等于2?(3)若
为
的中点,
为
的中点,在点
运动的过程中,线段
的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段
的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,﹣3),

(1)求二次函数y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;
(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径. -
科目: 来源: 题型:
查看答案和解析>>【题目】小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是

A.①②③ B.①②④ C.①③④ D.①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m).

-
科目: 来源: 题型:
查看答案和解析>>【题目】高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车取游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.
请结合图象解决下面问题:

(1)高铁的平均速度是每小时多少千米?
(2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米?
(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?
-
科目: 来源: 题型:
查看答案和解析>>【题目】“六一”前夕,某玩具经销商用去2350元购进A,B,C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如表所示
型 号
A
B
C
进价(元/套)
40
55
50
售价(元/套)
50
80
65
(1)用含x、y的代数式表示购进C种玩具的套数;
(2)求y与x之间的函数关系式;
(3)假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元.
①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时三种玩具各多少套.
相关试题