【题目】各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(GPick,1859~1942年)证明了格点多边形的面积公式S=a+
b﹣1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+
×6﹣1=6![]()
(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.
(2)请在图乙中画一个格点三角形,使它的面积为
,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)
参考答案:
【答案】
(1)
解:如图所示,a=4,b=4,S=4+
×4﹣1=5;
![]()
(2)
解:因为S=
,b=3,所以a=3,如图所示,
![]()
【解析】(1)根据皮克公式画图计算即可;(2)根据题意可知a=3,b=3,画出满足题意的图形即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是( )

A.y=
B.y=
C.y=2
D.y=3
-
科目: 来源: 题型:
查看答案和解析>>【题目】图甲是小明设计的带菱形图案的花边作品.该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙).图乙中
,EF=4cm,上下两个阴影三角形的面积之和为54cm2 , 其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为cm. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
笔试
面试
体能
甲
83
79
90
乙
85
80
75
丙
80
90
73
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.
(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F.已知∠AEF=135°.

(1)求证:DF∥AB;
(2)若OC=CE,BF=
,求DE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某农业观光园计划将一块面积为900m2的园圃分成A,B,C三个区域,分别种植甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株.已知B区域面积是A区域面积的2倍.设A区域面积为x(m2).
(1)求该园圃栽种的花卉总株数y关于x的函数表达式.
(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?
(3)若三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元.请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+6x交x轴正半轴于点A,顶点为M,对称轴MB交x轴于点B.过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.

(1)求点A,M的坐标.
(2)当BD为何值时,点F恰好落在该抛物线上?
(3)当BD=1时
求直线MF的解析式,并判断点A是否落在该直线上.
(4)②延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1 , S2 , S3 , 则S1:S2:S3= .
相关试题