【题目】解方程:
①2x2﹣4x﹣7=0(配方法);
②4x2﹣3x﹣1=0(公式法);
③(x+3)(x﹣1)=5;
④(3y﹣2)2=(2y﹣3)2.
参考答案:
【答案】①x1=1+
,x2=1﹣
②x1=1,x2=﹣
③x1=﹣4,x2=2④y1=1,y2=﹣1
【解析】试题分析:
(1)、(2)按题中指定方法解答即可;
(3)先将方程整理为一般形式,再用“因式分解法”解方程即可;
(4)根据方程特点用“因式分解法”解方程即可.
试题解析:
①移项得:x2﹣2x=![]()
配方得:x2﹣2x+1=
,即(x﹣1)2=
,
∴x﹣1=±![]()
∴ x1=1+
,x2=1﹣
.
② ∵在方程4x2﹣3x﹣1=0中,a=4,b=﹣3,c=﹣1,
∴ △ =9+16=25
x=
,
∴x1=1,x2=﹣
.
③原方程整理得:x2+2x﹣8=0,
(x+4)(x﹣2)=0,
∴ x1=﹣4,x2=2.
④原方程可化为:(3y﹣2+2y﹣3)(3y﹣2﹣2y+3)=0,
(5y﹣5)(y+1)=0,
∴ y1=1,y2=﹣1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).

(1)直接写出点C1的坐标;
(2)在图中画出△A1B1C1;
(3)求△AOA1的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A,B,C为一个平行四边形的三个顶点,且A,B,C三点的坐标分别为(3,3),(6,4),(4,6).
(1)请直接写出这个平行四边形第四个顶点的坐标;
(2)求这个平行四边形的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及S四边形ABDC.
(2)在y轴上是否存在一点Q,连接QA,QB,使S△QAB=S四边形ABDC?若存在这样一点,求出点Q的坐标;若不存在,试说明理由.
(3)如图②,点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合),给出下列结论:①
的值不变,②
的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】现定义一种新运算:“※”,使得a※b=4ab
(1)求4※7的值;
(2)求x※x+2※x﹣2※4=0中x的值;
(3)不论x是什么数,总有a※x=x,求a的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同一时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21米,留在墙上的影高为2米,求旗杆的高度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】解下列不等式或不等式组,并把它们的解集在数轴上表示出来.
(1)5x+15>4x-13; (2)
≤
;(3)
(4) 
相关试题