【题目】如图1所示,从边长为a的正方形纸片中减去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积=
).
(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b的式子表示S1和S2;
(2)请写出上述过程所揭示的乘法公式.
![]()
参考答案:
【答案】(1)
,
;(2)
.
【解析】试题分析:(1)先用大正方形的面积减去小正方形的面积,即可求出S1,再根据梯形的面积公式即可求出S2;
(2)根据(1)得出的值,直接可写出乘法公式(a+b)(a-b)=a2-b2.
试题解析:(1)∵大正方形的边长为a,小正方形的边长为b,
∴S1=a2﹣b2,
S2=
(2a+2b)(a﹣b)=(a+b)(a﹣b);
(2)根据题意得:
(a+b)(a﹣b)=a2﹣b2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:
(即tan∠DEM=1:
),且D,M,E,C,N,B,A在同一平面内,E,C,N在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:
≈1.73,
≈1.41)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在如图所示的直角坐标系中,△ABC的顶点坐标分别是A(-4,-1),B(1,1),C(-1,4);点
是△ABC内一点,当点
平移到点
时.①请写出平移后新
三个顶点的坐标;②求
的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,得到A,B的对应点C,D,连接AC,BD,CD.
(1)直接写出点C,D的坐标,求出四边形ABDC的面积;
(2)在x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍,若存在,请求出点F的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求证:四边形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】问题背景:在△ABC中,AB、BC、AC三边的长分别为
、
、
,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上: .
思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法.如果△ABC三边的长分别
a、
a、
a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知E,F分别是AB、CD上的动点,P也为一动点.
(1)如图1,若AB∥CD,求证:∠P=∠BEP+∠PFD;
(2)如图2,若∠P=∠PFD-∠BEP,求证:AB∥CD;
(3)如图3,AB∥CD,移动E,F使得∠EPF=90°,作∠PEG=∠BEP,求
的值.
相关试题