【题目】已知∠AOB=30°,点P在∠AOB内部且OP=4,P1与P关于OB对称,P2与P关于OA对称,则P1P2= .
参考答案:
【答案】4
【解析】解:如图,连接OP,∵P1与P关于OB对称,P2与P关于OA对称,
∴OP1=OP,OP=OP2 , ∠BOP=∠BOP1 , ∠AOP=∠AOP2 ,
∴OP1=OP2 ,
∠P1OP2=∠BOP+∠BOP1+∠AOP+∠AOP2=2∠BOP+2∠AOP=2∠AOB,
∵∠AOB=30°,
∴∠P1OP2=60°,
∴△P1OP2是等边三角形.
∵OP=4,
∴P1P2=4,
故答案为:4.![]()
作出图形,连接OP,根据轴对称的性质可得OP1=OP=OP2 , ∠BOP=∠BOP1 , ∠AOP=∠AOP2 , 然后求出∠P1OP2=2∠AOB=60°,再根据有一个角是60°的等腰三角形是等边三角形判定,即可得出P1P2的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列变形正确的是( )
A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5
B.﹣3x=2变形得
C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6
D.
变形得4x﹣6=3x+18 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从如图所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=
时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线
与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.(1)直接写出抛物线的解析式: ;
(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?
(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算及解方程:
(1)化简:(5a2﹣ab)﹣2(3a2﹣
ab)
(2)解方程:
﹣
=1
(3)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣
x2y)+xy],其中x=3,y=﹣
. -
科目: 来源: 题型:
查看答案和解析>>【题目】小河两岸边各有一棵树,分别高30尺和20尺,两树的距离是50尺,每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见水面上游出一条鱼,它们立刻飞去抓鱼,速度相同,并且同时到达目标.则这条鱼出现的地方离开比较高的树的距离为尺.
-
科目: 来源: 题型:
查看答案和解析>>【题目】画图表示一个点从数轴上的原点开始向右移动3个单位长度,再向左移动2个单位长度;这时表示什么数?
相关试题