【题目】如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.
![]()
(1)求证:△BCD是等腰三角形;
(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)
参考答案:
【答案】(1)见解析;(2)a﹣b+b+b=a+b.
【解析】试题分析:(1)先由AB=AC,∠A=36°,可求∠B=∠ACB=
=72°,然后由DE是AC的垂直平分线,可得AD=DC,进而可得∠ACD=∠A=36°,然后根据外角的性质可求:∠CDB=∠ACD+∠A=72°,根据等角对等边可得:CD=CB,进而可证△BCD是等腰三角形;
(2)由(1)知:AD=CD=CB=b,由△BCD的周长是a,可得AB=a﹣b,由AB=AC,可得AC=a﹣b,进而得到△ACD的周长=AC+AD+CD=a﹣b+b+b=a+b.
(1)证明:∵AB=AC,∠A=36°,
∴∠B=∠ACB=
=72°,
∵DE是AC的垂直平分线,
∴AD=DC,
∴∠ACD=∠A=36°,
∵∠CDB是△ADC的外角,
∴∠CDB=∠ACD+∠A=72°,
∴∠B=∠CDB,
∴CB=CD,
∴△BCD是等腰三角形;
(2)解:∵AD=CD=CB=b,△BCD的周长是a,
∴AB=a﹣b,
∵AB=AC,
∴AC=a﹣b,
∴△ACD的周长=AC+AD+CD=a﹣b+b+b=a+b.
点睛:此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:点O到△ABC的两边AB、AC所在直线的距离OD=OE,且OB=OC.
(1)如图,若点O在BC上,求证:AB=AC;
(2)如图,若点O在△ABC的内部,求证:AB=AC;
(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.


-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题满分10分)如图,已知直线
和双曲线
(k>0),点A(m,n)在双曲线
上.当m=n=2时.(1)直接写出k的值;
(2)将直线
作怎样的平移能使平移后的直线与双曲线
只有一个交点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校在八年级(1)班学生中开展对于“我国国家公祭日”知晓情况的问卷调查.
问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图.

请根据上述信息解答下列问题:
(1)该班参与问卷调查的人数有 人;补全条形统计图;
(2)求出C类人数占总调查人数的百分比及扇形统计图中
类所对应扇形圆心角的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°,得到△FEC
(1)猜想AE与BF有何关系,说明理由.
(2)若△ABC的面积为3cm2,求四边形ABFE的面积.
(3)当∠ACB为多少度时,四边形ABFE为矩形?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.
(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?
(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(﹣3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在△ABC中,AD是BC边上的中线.
(1)画出与△ACD关于点D成中心对称的三角形;

(2)找出与AC相等的线段;
(3)探究:△ABC中AB与AC的和与中线AD之间有何大小关系?并说明理由;
(4)若AB=5,AC=3,求线段AD的取值范围.
相关试题