【题目】拼图填空:剪裁出若干个大小.形状完全相同的直角三角形,三边长分别记为a.b.c,如图①.
![]()
![]()
![]()
![]()
![]()
(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和 (填“大于”.“小于”或“等于”)图③中小正方形的面积,用关系式表示为 .
(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有 个正方形,它们的面积之间的关系是 ,用关系式表示为 .
(3)拼图三:用8个直角三角形纸片拼成如图⑤的形状,图中3个正方形的面积之间的关系是 ,用关系式表示 .
参考答案:
【答案】(1)等于,a2+b2=c2;(2)两个小正方形面积等于大正方形面积,a2+b2=c2;(3)三个正方形的面积差相等,(b+a)2-c2=c2-(b-a)2.
【解析】
(1)利用两图形都是两个小正方形的面积之和等于大正方形减去4个直角三角形得出,即可得出面积关系,利用直角三角形各边长度得出即可;
(2)利用图形结合直角三角形面积,可以得出两个小正方形面积相加等于大正方形面积,进而得出关系时即可;
(3)利用图形可以得出图中3个正方形的面积之间的关系为三个正方形的面积差相等,进而得出关系时即可.
解:(1)∵观察图②③可发现,图②中两个小正方形的面积之和与图③中小正方形的面积,都是两个小正方形的面积之和等于大正方形减去4个直角三角形得出,
∴图②中两个小正方形的面积之和等于图③中小正方形的面积,
∵图②中两个小正方形的面积之和为(a+b)2-2ab=a2+b2,图③中小正方形的面积为:c2,
故a2+b2=c2;
故答案为:等于,a2+b2=c2;
(2)根据图形可以得出去掉大正方形与两小正方形重叠部分,正好是4个直角三角形的面积,
故图中3个正方形的面积之间的关系是:两个小正方形面积等于大正方形面积,
用关系式表示为:a2+b2=c2;
故答案为:两个小正方形面积等于大正方形面积,a2+b2=c2;
(3)利用图形可以得出:大正方形面积-中正方形面积=中正方形面积-小正方形面积,即图中3个正方形的面积之间的关系是:三个正方形的面积差相等;
用关系式表示为:(b+a)2-c2=c2-(b-a)2.
故答案为:三个正方形的面积差相等,(b+a)2-c2=c2-(b-a)2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.
(1)如图1,若BD=BA,求证:△ABE≌△DBE;
(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AFAC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图(2)所示.已知展开图中每个正方形的边长为1:

(1)在展开图(2)中可画出最长线段的长度为 ,在平面展开图(2)中这样的最长线段一共能画出 条。
(2)试比较立体图中∠ABC与平面展开图中∠A′B′C′的大小关系,并说明理由。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD,△BCE,△ABC的面积分别是S1,S2,S3,现有如下结论:
①S1∶S2=AC2∶BC2;②连接AE,BD,则△BCD≌△ECA;③若AC⊥BC,则S1·S2=
S23.其中结论正确的序号是__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.

下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第
个“广”字中的棋子个数是________
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,则AE的长为( )

A. 2或3 B.
或
C.
或
D. 3或4
相关试题