【题目】下列条件中,不能判定四边形ABCD是平行四边形的是( )
A.
,
B.
,![]()
C.
,
D.
,![]()
参考答案:
【答案】C
【解析】
根据平行四边形的判定条件,即可判断出正确答案.
A、∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,
故A可以判断四边形ABCD是平行四边形;
B、∵AB∥CD,∴∠B+∠C=180°,
∵∠B=∠D,
∴∠D+∠C=180°,
∴AC∥BD,
∴四边形ABCD是平行四边形,
故B可以判断四边形ABCD是平行四边形;
C、∵AB∥CD,AD=BC,
∴四边形ABCD可能是平行四边形,有可能是等腰梯形.
故C不可以判断四边形ABCD是平行四边形
D、∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,
故D可以判断四边形ABCD是平行四边形;
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若有a,b两个数,满足关系式:a+b=ab﹣1,则称a,b为“共生数对”,记作(a,b).
例如:当2,3满足2+3=2×3﹣1时,则(2,3)是“共生数对”.
(1)若(x,﹣2)是“共生数对”,求x的值;
(2)若(m,n)是“共生数对”,判断(n,m)是否也是“共生数对”,请通过计算说明.
(3)请再写出两个不同的“共生数对”
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,A(0,5),直线x=-5与x轴交于点D,直线y=-
x-
与x轴及直线x=-5分别交于点C,E.点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;
(2)若S=S△CDE+S四边形ABDO,求S的值;
(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积,如此不更快捷吗?”但大家经反复验算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.

-
科目: 来源: 题型:
查看答案和解析>>【题目】用火柴棒按下列方式搭建三角形:

(1)当三角形个数为1时,需3根火柴棒;当三角形个数为2时,需5根火柴棒;则当三角形个数为100时,需火柴棒 根;当三角形个数为n时,需火柴棒 根(用含n的代数式表示);
(2)当火柴棒的根数为2019时,求三角形的个数?
(3)组成三角形的火柴棒能否为1000根,如果能,求三角形的个数;如果不能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)求∠CON的度数;
(2)如图2是将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周的情况.在旋转的过程中,当第t秒时,三条射线OA、OC、OM构成相等的角,求此时t的值;
(3)将图1中的三角板绕点O逆时针旋转至图3,使ON在∠AOC的内部时,请探究∠AOM与∠CON的数量关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】3 月初某商品价格上涨,每件价格上涨 20%.用 3000 元买到的该商品 件数比涨价前少 20 件.3 月下旬该商品开始降价,经过两次降价后,该商品价格为每 件 19.2 元.
(1)求 3 月初该商品上涨后的价格;
(2)若该商品两次降价率相同,求该商品价格的平均降价率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.

请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.
(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
相关试题