【题目】如图:在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上。 正确的是 (填序号)
![]()
参考答案:
【答案】①②③
【解析】
试题分析:根据题中条件,由两边夹一角可得△AOD≌△BOC,得出对应角相等,又由已知得出AC=BD,可得△APC≌△BPD,同理连接OP,可证△AOP≌△BOP,进而可得出结论.
∵OA=OB,OC=OD,∠O为公共角,
∴△AOD≌△BOC,
∴∠A=∠B,
又∠APC=∠BPD,
∴∠ACP=∠BDP,
OA-OC=OB-OD,即AC=BD,
∴△APC≌△BPD,
∴AP=BP,
连接OP,
![]()
即可得△AOP≌△BOP,得出∠AOP=∠BOP,
∴点P在∠AOB的平分线上.
故题中结论都正确.
故答案为:①②③.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△A1B1C1是边长为1的等边三角形,A2为等边△A1B1C1的中心,连接A2B1并延长到点B2 , 使A2B1=B1B2 , 以A2B2为边作等边△A2B2C2 , A3为等边△A2B2C2的中心,连接A3B2并延长到点B3 , 使A3B2=B2B3 , 以A3B3为边作等边△A3B3C3 , 依次作下去得到等边△AnBnCn , 则等边△A6B6C6的边长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】探索三角形的内角与外角平分线(三角形的外角是三角形的一边与另一边的延长线所组成的角):
(1)如图①,在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠A=50°,则∠BOC=________;此时∠A与∠BOC有怎样的关系?试说明理由.
(2)如图②,BO平分∠ABC,CO平分∠ACE,若∠A=50°,则∠BOC=________;此时∠A与∠BOC有怎样的关系?试说明理由.
(3)如图③,△ABC的外角∠CBE,∠BCF的平分线BO,CO相交于点O,若∠A=50°,则∠BOC=______;此时∠A与∠BOC有怎样的关系?(不需说明理由)

-
科目: 来源: 题型:
查看答案和解析>>【题目】概念学习
规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.
从三角形
不是等腰三角形
一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念
如图1,在
中,
,
,请写出图中两对“等角三角形”
概念应用
如图2,在
中,CD为角平分线,
,
.求证:CD为
的等角分割线.
在
中,
,CD是
的等角分割线,直接写出
的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.
在图中画出与
关于直线l成轴对称的
;
三角形ABC的面积为______;
以AC为边作与
全等的三角形,则可作出______个三角形与
全等;
在直线l上找一点P,使
的长最短.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB边的垂直平分线
交BC于D,AC边的垂直平分线
交BC于E,
与
相交于点O,△ADE的周长为6cm.(1)求BC的长;
(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长;

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.
(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;
(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.

相关试题