【题目】如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为_____.
![]()
【答案】18°
【解析】
设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.
解:∵AB=AC,BD=BC=AD,
∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,
设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,
∵△ABC中,∠A+∠ABC+∠C=180°,
∴α+2α+2α=180°,
∴α=36°,
∴∠C=72°,
又∵DF⊥BC,
∴Rt△CDF中,∠CDF=90°﹣72°=18°,
故答案为:18°.