【题目】PA、PB分别切⊙O于点A、B,∠PAB=60°,点C在⊙O上,则∠ACB的度数为_____.
参考答案:
【答案】60°或120°.
【解析】
连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
解:连接OA、OB.
∵PA,PB分别切⊙O于点A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=60°,
∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,
∴
即当C在D处时,∠ACB=60°.
在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.
于是∠ACB的度数为60°或120°,
故答案为:60°或120°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,AD为边BC上的中线,点E在AD上,以点A为圆心,AB长为半径画弧,交BE的延长线于点F,点G在EF上,且∠EAG=∠CAF,连接CE.
(1)依题意补全图形;
(2)求证:FG=CE;
(3)若EF平分∠AEC,则∠BAE与∠ABE满足的等量关系为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则∠CFD的度数为( )

A. 80° B. 90° C. 100° D. 120°
-
科目: 来源: 题型:
查看答案和解析>>【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.

B.

C.

D.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC=15,点D是边BC上一动点(不与B、C重合),∠ADE=∠B=α,DE交AC于点E,且tanα=
有以下的结论:① △ADE∽△ACD;② 当CD=9时,△ACD与△DBE全等;③ △BDE为直角三角形时,BD为12或
;④ 0<BE≤
,其中正确的结论是___________(填入正确结论的序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,
,
,
,…都是等边三角形,其边长依次为2,4,6,…,其中点
的坐标为
,点
的坐标为
,点
的坐标为
,点
的坐标为
,…,按此规律排下去,则点
的坐标为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22﹣x1x2=8,求m的值.
相关试题