【题目】某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.
![]()
参考答案:
【答案】雕像AB的高度为95尺.
【解析】
试题分析:过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,求得EG的长,即可得BF的长;在Rt△BEF中,可得EF=
BF,在Rt△AEF中,∠AEF=60°,设AB=x,根据锐角三角函数求得x即可.
试题解析:如图,
![]()
过点E作EF⊥AC,EG⊥CD,
在Rt△DEG中,∵DE=1620,∠D=30°,
∴EG=DEsin∠D=1620×
=810,
∵BC=857.5,CF=EG,
∴BF=BC﹣CF=47.5,
在Rt△BEF中,tan∠BEF=
,
∴EF=
BF,
在Rt△AEF中,∠AEF=60°,设AB=x,
∵tan∠AEF=
,
∴AF=EF×tan∠AEF,
∴x+47.5=3×47.5,
∴x=95,
答:雕像AB的高度为95尺.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.
(1)求甲、乙每个商品的进货单价;
(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?
(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:(2a+b)2﹣(a+2b)2= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同
(1)求甲、乙两种救灾物品每件的价格各是多少元?
(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各式从左到右的变形,是因式分解的为( )
A.6ab=2a·3b B.(x+5)(x-2)=x2+3x-10
C.x2-8x+16=(x-4)2 D.x2-9+6x=(x-3)(x+3)+6x
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图所示,
(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.
(2)在x轴上画出点P,使PA+PC最小,写出作法.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是( )
A.∠A
B.∠B
C.∠C
D.∠B或∠C
相关试题