【题目】如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.
![]()
(1)求证:△DEC≌△EDA;
(2)求DF的值;
参考答案:
【答案】见解析
【解析】
试题(1)由矩形和翻折的性质可知AD=CE,DC=EA,根据“SSS”可求得△DEC≌△EDA;
(2)根据勾股定理即可求得
试题解析:(1)由矩形的性质可知△ADC≌△CEA,
∴AD=CE,DC=EA,∠ACD=∠CAE,
在△ADE与△CED中
![]()
∴△DEC≌△EDA(SSS);
(2)∵∠ACD=∠CAE,
∴AF=CF,
设DF=x,则AF=CF=4﹣x,
在RT△ADF中,AD2+DF2=AF2,
即32+x2=(4﹣x)2,
解得;x=
,
即DF=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:ABC平移后得出△A1B1C1,点A(﹣1,3)平移后得A1(﹣4,2),又已知B1(﹣2,3),C1(1,﹣1),求B、C坐标,画图并说明经过了怎样的平移.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.

(1)求y与x的函数关系式;
(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;
(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,直线AB与y轴交于点
,与x轴交于点B,
,直线CD与y轴交于点D,与x轴交于点
,
,直线AB与直线CD交于点Q,E为直线CD上一动点,过点E作x轴的垂线,交直线AB于点M,交x轴于点N,连接AE、BE.
求直线AB、CD的解析式及点Q的坐标;
当E点运动到Q点的右侧,且
的面积为
时,在y轴上有一动点P,直线AB上有一动点R,当
的周长最小时,求点P的坐标及
周长的最小值.
在
问的条件下,如图2将
绕着点B逆时针旋转
得到
,使点M与点G重合,点N与点H重合,再将
沿着直线AB平移,记平移中的
为
,在平移过程中,设直线
与x轴交于点F,是否存在这样的点F,使得
为等腰三角形?若存在,求出此时点F的坐标;若不存在,说明理由
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示:
(1)直接写出点A的坐标,点A关于x轴的对称点B的坐标,点B关于y轴的对称点C的坐标.
(2)画出将线段BC向右平移2个单位,再向上平移4个单位后的线段B′C′,并直接写出B′的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AD=2
,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为___.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,张三打算在院落种上蔬菜.已知院落为东西长为32米,南北宽为20米的长方形,为了行走方便,要修筑同样宽度的三条小路,东西两条,南北一条,余下的部分种上各类蔬菜.若每条小路的宽均为1米.
(1)求蔬菜的种植面积;
(2)若每平方米的每季蔬菜的值为3元,成本为1元,这个院落每季的产值是多少?

相关试题