【题目】如图,已知∠ABC=90°, D是直线AB上的点,AD=BC ,过点A作AF⊥AB,并截取AF=DB ,连接DC、DF、CF ,判断△CDF的形状并证明.
![]()
参考答案:
【答案】△
是等腰直角三角形,证明见解析
【解析】
试题由“ASA”证明△ADF≌△BCD得到DF=CD,∠ADF=∠BCD,再利用∠BCD+∠CDB=90°得到∠CDF=90°,则可判断△CDF为等腰直角三角形.
试题解析:△
是等腰直角三角形,
证明如下:
∵AF⊥AD,∠ABC=90°,
∴∠FAD=∠DBC,
在△FAD与△DBC中,
,
∴△FAD≌△DBC(SAS);
∴FD=DC,
∴△CDF是等腰三角形,
∵△FAD≌△DBC,
∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,
∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,∠BAD=25°,∠ADC=115°,O为AB的中点,以点O为圆心、AO长为半径作圆,恰好点D在⊙O上,连接OD,若∠EAD=25°,下列说法中不正确的是( )

A.D是劣弧
的中点
B.CD是⊙O的切线
C.AE∥OD
D.∠DOB=∠EAD -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC和△DBE中,BC=BE,还需再添加两个条件才能使△ABC≌△DBE,则不能添加的一组条件是( )

A. AB=DB,∠ A=∠ D B. DB=AB,AC=DE C. AC=DE,∠C=∠E D. ∠ C=∠ E,∠ A=∠ D
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明用尺规作图作△ABC边AC上的高BH,作法如下:
①分别以点D,E为圆心,大于
DE的长为半径作弧,两弧交于F; ②作射线BF,交边AC于点H;
③以B为圆心,BK长为半径作弧,交直线AC于点D和E;
④取一点K,使K和B在AC的两侧;
所以,BH就是所求作的高. 其中顺序正确的作图步骤是( )

A. ①②③④ B. ④③②① C. ②④③① D. ④③①②
-
科目: 来源: 题型:
查看答案和解析>>【题目】现有五张分别画有等边三角形、平行四边形、矩形、正五边形和圆的五个图形的卡片,它们的背面相同,小梅将它们的背面朝上,从中任意抽出一张,下列说法中正确的是( )
A.“抽出的图形是中心对称图形”属于必然事件
B.“抽出的图形是六边形”属于随机事件
C.抽出的图形为四边形的概率是
D.抽出的图形为轴对称图形的概率是
-
科目: 来源: 题型:
查看答案和解析>>【题目】列方程或方程组解应用题:
某中学为迎接校运会,筹集7000元购买了甲、乙两种品牌的篮球共30个,其中购买甲品牌篮球花费3000元,已知甲品牌篮球比乙品牌篮球的单价高50%,求乙品牌篮球的单价及个数。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),
C(3,4)
⑴ 作出与△ABC关于y轴对称△A1B1C1,并写出 三个顶点的坐标为:A1( ),B1( ),C1( );
⑵ 在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标;
⑶ 在 y 轴上是否存在点 Q,使得S△AOQ=
S△ABC,如果存在,求出点 Q 的坐标,如果不存在,说明理由。
相关试题