【题目】为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
参考答案:
【答案】
(1)解:设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,
根据题意得方程组得:
,
解方程组得:
,
∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元
(2)解:设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,
∴
,
解得:50≤x≤53,
∵x 为正整数,x=50,51,52,53
∴共有4种进货方案,
分别为:方案1:商店购进A种纪念品50个,则购进B种纪念品有50个;
方案2:商店购进A种纪念品51个,则购进B种纪念品有49个;
方案3:商店购进A种纪念品52个,则购进B种纪念品有48个;
方案4:商店购进A种纪念品53个,则购进B种纪念品有47个.
(3)解:因为B种纪念品利润较高,故B种数量越多总利润越高,
设利润为W,则W=20x+30(100﹣x)=﹣10x+3000.
∵k=﹣10<0,
∴W随x大而小,
∴选择购A种50件,B种50件.
总利润=50×20+50×30=2500(元)
∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.
【解析】根据题意找出相等的关系量设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,得到8a+3b=950,5 a + 6 b = 800,解得a = 100, b = 50,得到购进一件A种纪念品需要100元,购进一件B种纪念品需要50元;设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,得到100 x + 50 ( 100 x ) ≥ 7500 ,100 x + 50 ( 100 x ) ≤ 7650,得到50≤x≤53,由x 为正整数,x=50,51,52,53,共有4种进货方案;因为B种纪念品利润较高,故B种数量越多总利润越高,设利润为W,则W=20x+30(100﹣x)=﹣10x+3000,由k=﹣10<0,得到W随x大而小,得到选择购A种50件,B种50件,得到总利润=50×20+50×30=2500元.
【考点精析】根据题目的已知条件,利用一元一次不等式组的应用的相关知识可以得到问题的答案,需要掌握1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,点F为对角线BD上一点,点E为AB的延长线上一点,DF=BE,CE=CF.求证:(1)△CFD≌△CEB;(2)∠CFE=60°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若x=m是方程x2+2x-2019=0的一个根,则m(m+2)的值为____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各组长度的线段能构成三角形的是( )
A. 1.5cm 3.9cm 2.3cm B. 3.5cm 7.1cm 3.6cm
C. 6cm 1cm 6cm D. 4cm 10cm4cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为( )
A.b=3,c=﹣1
B.b=﹣6,c=2
C.b=﹣6,c=﹣4
D.b=﹣4,c=﹣6 -
科目: 来源: 题型:
查看答案和解析>>【题目】命题“相等的角是对顶角”是命题(填“真”或“假”).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在同一平面内,将△ABC绕点A旋转到△AED的位置,若AE⊥BC,∠ADC=65°,则∠ABC的度数为( )

A.30°
B.40°
C.50°
D.60°
相关试题