【题目】(8分)如图,△A1B1C1是△ABC向右平移四个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).
![]()
(1)请画出△ABC,并写出点A、B、C的坐标;
(2)求出△AOA1的面积.
参考答案:
【答案】(1)作图见试题解析,A(-3,1), B(0,2),C(-1,4);(2)2.
【解析】
试题(1)△A1B1C1是由△ABC向右平移4个单位得到的,故将△A1B1C1向左平移4个单位既是△ABC;
(2)由平移性质知,A1A平行于x轴,且等于平移距离4,△A1OA边A1OA上的高可点A1的坐标确定.
试题解析:(1)A(-3,1), B(0,2),C(-1,4),如图:
![]()
(2)A1A=4,OD=1,∴
=
A1A×CD=
×4×1=2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A(a,m)在双曲线y=
上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,
①若t=1,直接写出点C的坐标;
②若双曲线y=
经过点C,求t的值.(2)如图2,将图1中的双曲线y=
(x>0)沿y轴折叠得到双曲线y=﹣
(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣
(x<0)上的点D(d,n)处,求m和n的数量关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)解方程:4(x+1)2-169=0;
(2)一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ABC=90°.
(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;
(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=
,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=
,
,直接写出tan∠CEB的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.
(1)直接写出抛物线L的解析式;
(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;
(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC与△CDE都是等边三角形,B,C,D在一条直线上,连结B,E两点交AC于点M,连结A,D两点交CE于N点.

(1)AD与BE有什么数量关系,并证明你的结论.
(2)求证:△MNC是等边三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD∥GE,AQ 平分∠FAC,交 BD 于 Q,∠GFA=50°,∠Q=25°,则∠ACB 的 度数( )

A. 90° B. 95° C. 100° D. 105°
相关试题