【题目】如图,已知抛物线y=x2+bx+c与y轴交于点C,与x轴交于点A、B,且AB=2,抛物线的对称轴为直线x=2;
![]()
(1)求抛物线的函数表达式;
(2)如果抛物线的对称轴上存在一点P,使得△APC周长的值最小,求此时P点坐标及△APC周长;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是平行四边形,求点D的坐标.(直接写出结果)
参考答案:
【答案】(1)y=x2-4x+3.(2)
.()点D的坐标可以为:(2,-1)、(0,3)、(4,3).
【解析】
试题分析:(1)由AB=2,抛物线的对称轴为x=2,得知抛物线与x轴交点为(1,0)、(3,0),即1、3为方程x2+bx+c=0的两个根,结合跟与系数的关系可求得b、c;
(2)由抛物线的对称性,可得出PA+PC最短时,P点为线段BC与对称轴的交点,由此可得出结论;
(3)平行四边形分两种情况,一种AB为对角线,由平行四边形对角线的性质可求出D点坐标;另一种,AB为一条边,根据对比相等,亦能求出D点的坐标.
试题解析:(1)∵AB=2,对称轴为直线x=2,
∴点A的坐标为(1,0),点B的坐标为(3,0),
∵抛物线y=x2+bx+c与x轴交于点A,B,
∴1,3是方程x2+bx+c=0的两个根,
由根与系数的关系,得1+3=-b,1×3=c,
∴b=-4,c=3,
∴抛物线的函数表达式为y=x2-4x+3.
(2)连接AC,BC,BC交对称轴于点P,连接PA,如图1,
![]()
由(1)知抛物线的函数表达式为y=x2-4x+3,点A,B的坐标分别为(1,0),(3,0),
∴点C的坐标为(0,3),
∴BC=
,AC=
.
∵点A,B关于对称轴直线x=2对称,
∴PA=PB,
∴PA+PC=PB+PC,此时,PB+PC=BC,
∴当点P在对称轴上运动时,PA+PC的最小值等于BC,
∴△APC周长的最小值=AC+AP+PC=BC+AC=
.
(3)以点A、B、D、E为顶点的四边形是平行四边形分两种情况,
①线段AB为对角线,如图2,
![]()
∵平行四边对角线互相平分,
∴DE在对称轴上,此时D点为抛物线的顶点,
将x=2代入y=x2-4x+3中,得y=-1,
即点D坐标为(2,-1).
②线段AB为边,如图3,
![]()
∵四边形ABDE为平行四边形,
∴ED=AB=2,
设点E坐标为(2,m),则点D坐标为(4,m)或(0,m),
∵点D在抛物线上,
将x=0和x=4分别代入y=x2-4x+3中,解得m均为3,
故点D的坐标为(4,3)或(0,3).
综合①②得点D的坐标可以为:(2,-1)、(0,3)、(4,3).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点(2,7)在函数y=ax+3的图象上,则a的值为____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2(a2+b2)-(a+b)2
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2,把△EFO放大,则点E的对应点E′的坐标是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD的周长是20 cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为68 cm2,那么矩形ABCD的面积是_______cm2.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(3a-b)(3a+b)-(2a-b)2
相关试题