【题目】如图,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.
(1)在图①中,请你通过观察、测量、猜想,写出AB与AP所满足的数量关系和位置关系;
(2)将△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP,BQ,猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;
(3)将△EFP沿直线l向左平移到图③的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,你认为(2)中所猜想的BQ与AP的数量关系与位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.
![]()
参考答案:
【答案】(1)AB=AP,AB⊥AP (2)BQ=AP,BQ⊥AP (3)成立
【解析】
(1)根据图形就可以猜想出结论.(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;要证明BQ⊥AP,可以证明∠QMA=90°,只要证出∠1=∠2,∠3=∠4,∠1+∠3=90°即可证出.(3)类比(2)的证明就可以得到,结论仍成立.
(1)AB=AP,AB⊥AP
证明:∵AC⊥BC且AC=BC,
∴△ABC为等腰直角三角形,
∴∠BAC=∠ABC=
(180°﹣∠ACB)=45°,
又∵△ABC与△EFP全等,
同理可证∠PEF=45°,
∴∠BAP=45°+45°=90°,
∴AB=AP且AB⊥AP;
(2)BQ=AP;BQ⊥AP.
证明:①由已知,得EF=FP,EF⊥FP,
∴∠EPF=45°.
又∵AC⊥BC,
∴∠CQP=∠CPQ=45°.
∴CQ=CP.
∵在Rt△BCQ和Rt△ACP中,
BC=AC,∠BCQ=∠ACP=90°,CQ=CP,
∴△BCQ≌△ACP(SAS),
∴BQ=AP.
②如图,延长BQ交AP于点M.
∵Rt△BCQ≌Rt△ACP,
∴∠1=∠2.
∵在Rt△BCQ中,∠1+∠3=90°,又∠3=∠4,
∴∠2+∠4=∠1+∠3=90°.
∴∠QMA=90°.
∴BQ⊥AP;
![]()
(3)成立.证明:∵∠EPF=45°,∴∠CPQ=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°,∴CQ=CP.由SAS可证△BCQ≌△ACP,∴BQ=AP.延长QB交AP于点N,则∠PBN=∠CBQ.∵△BCQ≌△ACP,∴∠BQC=∠APC.在Rt△BCQ中,∠BQC+∠CBQ=90°,∴∠APC+∠PBN=90°,∴∠PNB=90°,∴BQ⊥AP
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知BD,CE是△ABC的两条高,直线BD,CE相交于点H.

(1)若∠BAC=100°,求∠DHE的度数;
(2)若△ABC中∠BAC=50°,直接写出∠DHE的度数是____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边三角形ABC中,AD⊥BC于点D,以AD为一边向右作等边三角形ADE,DE与AC交于点F.

(1)试判断DF与EF的数量关系,并给出证明;
(2)若CF的长为2 cm,试求等边三角形ABC的边长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,AC=BC,D为△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=AC.

(1)求∠CDE的度数;
(2)若点M在DE上,且DC=DM,求证:ME=BD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知甲同学手中藏有三张分别标有数字
、
、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.
(1)请你用树形图或列表法列出所有可能的结果;
(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等边三角形,D、E分别是BC、AC上的点,BD=CE,求∠AFE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD是平行四边形,则下列结论中不正确的是( )

A. 当AB=BC时,四边形ABCD是菱形
B. 当AC⊥BD时,四边形ABCD是菱形
C. 当∠ABC=90°时,四边形ABCD是矩形
D. 当AC=BD时,四边形ABCD是正方形
相关试题