【题目】如图,△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,求线段EF的长. ![]()
参考答案:
【答案】解:在△AGF和△ACF中,
,
∴△AGF≌△ACF(ASA),
∴AG=AC=6,GF=CF,
则BG=AB﹣AG=8﹣6=2.
又∵BE=CE,
∴EF是△BCG的中位线,
∴EF=
BG=1.
故答案是:1.
【解析】首先证明△AGF≌△ACF,则AG=AC=4,GF=CF,证明EF是△BCG的中位线,利用三角形的中位线定理即可求解.
【考点精析】本题主要考查了三角形中位线定理的相关知识点,需要掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.

请你根据上面提供的信息回答下列问题:
(1)扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人,训练后篮球定时定点投篮平均每个人的进球数是 .
(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知x2﹣2x﹣5=0,求代数式(x﹣1)2+x(x﹣4)+(x﹣3)(x+3)的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各式分解正确的是( )
A.12xyz﹣9x2y2=3xyz(4﹣3xy)
B.3a2y﹣3ay+3y=3y(a2﹣a+1)
C.﹣x2+xy﹣xz=﹣x(x+y﹣z)
D.a2b+5ab﹣b=b(a2+5a) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y1=kx+2与x轴交于点A(m,0)(m>4),与y轴交于点B,抛物线y2=ax2﹣4ax+c(a<0)经过A,B两点.P为线段AB上一点,过点P作PQ∥y轴交抛物线于点Q.
(1)当m=5时,
①求抛物线的关系式;
②设点P的横坐标为x,用含x的代数式表示PQ的长,并求当x为何值时,PQ=
;(2)若PQ长的最大值为16,试讨论关于x的一元二次方程ax2﹣4ax﹣kx=h的解的个数与h的取值范围的关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求出对称轴和顶点坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知反比例函数y=kx-1(k>0)的图象与一次函数图象y=﹣x+4交于a、b两点,点a的纵坐标为3.
(1)求反比例函数的解析;
(2)y轴上是否存在一点P,使2∠APB=∠AOB?若存在,求出点P的坐标;若不存在,请说明理由.

相关试题