【题目】如图,直线y1=kx+2与x轴交于点A(m,0)(m>4),与y轴交于点B,抛物线y2=ax2﹣4ax+c(a<0)经过A,B两点.P为线段AB上一点,过点P作PQ∥y轴交抛物线于点Q.
(1)当m=5时,
①求抛物线的关系式;
②设点P的横坐标为x,用含x的代数式表示PQ的长,并求当x为何值时,PQ=
;
(2)若PQ长的最大值为16,试讨论关于x的一元二次方程ax2﹣4ax﹣kx=h的解的个数与h的取值范围的关系.
![]()
参考答案:
【答案】(1)①y=﹣
x2+
x+2;②当x=1或x=4时,PQ=
;
(2)当h=16时,一元二次方程ax2﹣4ax﹣kx=h有两个相等的实数解;
当h>16时,一元二次方程ax2﹣4ax﹣kx=h没有实数解;
当0<h<16时,一元二次方程ax2﹣4ax﹣kx=h有两个解.
【解析】试题分析:(1)①有m=5得到A点坐标,再把A点坐标代入直线解析式求出k得到y1=﹣
x+2,接着计算自变量为0时对应的函数值可得B点坐标,然后把A点和B点坐标代入y2=ax2﹣4ax+c得到a和c的方程组,再解方程组求出a、c即可得到抛物线解析式;②利用二次函数图象上点的坐标特征和一次函数图象上点的坐标特征,设点P的坐标为(x,﹣
x+2),Q(x,﹣
x2+
x+2),则可表示出PQ=﹣
x2+2x,然后利用PQ=
得到﹣
x2+2x=
,然后解方程即可;(2)设P(x,kx+2),则Q(x,ax2﹣4ax+2),PQ的长用l表示,则易得l=ax2﹣(4a+k)x,再利用PQ长的最大值为16大致画出l与x的二次函数图象,由于一元二次方程ax2﹣4ax﹣kx=h的解的情况可看作为二次函数l=ax2﹣4ax﹣kx与直线l=h的交点个数,则利用函数图象可判断当h=16时,一元二次方程ax2﹣4ax﹣kx=h有两个相等的实数解;当h>16时,一元二次方程ax2﹣4ax﹣kx=h没有实数解;当0<h<16时,一元二次方程ax2﹣4ax﹣kx=h有两个解.
试题解析:
(1)①∵m=5,∴点A的坐标为(5,0),
把A(5,0)代入y1=kx+2得5k+2=0,解得k=﹣
,∴直线解析式为y1=﹣
x+2,
当x=0时,y1=2,∴点B的坐标为(0,2).
将A(5,0),B(0,2)代入
,得
,解得
,
∴抛物线的表达式为y=﹣
x2+
x+2;
②设点P的坐标为(x,﹣
x+2),则Q(x,﹣
x2+
x+2),
∴PQ=﹣
x2+
x+2﹣(﹣
x+2)=﹣
x2+2x,而PQ=
,
∴﹣
x2+2x=
,解得:x1=1,x2=4,∴当x=1或x=4时,PQ=
;
(2)设P(x,kx+2),则Q(x,ax2﹣4ax+2),PQ的长用l表示,
∴l=ax2﹣4ax+2﹣(kx+2)=ax2﹣(4a+k)x,∵PQ长的最大值为16,如图,
当h=16时,一元二次方程ax2﹣4ax﹣kx=h有两个相等的实数解;
当h>16时,一元二次方程ax2﹣4ax﹣kx=h没有实数解;
当0<h<16时,一元二次方程ax2﹣4ax﹣kx=h有两个解.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知x2﹣2x﹣5=0,求代数式(x﹣1)2+x(x﹣4)+(x﹣3)(x+3)的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各式分解正确的是( )
A.12xyz﹣9x2y2=3xyz(4﹣3xy)
B.3a2y﹣3ay+3y=3y(a2﹣a+1)
C.﹣x2+xy﹣xz=﹣x(x+y﹣z)
D.a2b+5ab﹣b=b(a2+5a) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,求线段EF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求出对称轴和顶点坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知反比例函数y=kx-1(k>0)的图象与一次函数图象y=﹣x+4交于a、b两点,点a的纵坐标为3.
(1)求反比例函数的解析;
(2)y轴上是否存在一点P,使2∠APB=∠AOB?若存在,求出点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.并求△ABC的面积。

相关试题