【题目】关于x的方程x2﹣x+a=0有实根.
(1)求a的取值范围;
(2)设x1、x2是方程的两个实数根,且满足(x1+1)(x2+1)=﹣1,求实数a的值.
参考答案:
【答案】(1)a≤
;(2)a=﹣3.
【解析】试题分析:(1)利用根的判别式得到△=1-4a=-4a+1≥0,然后解不等式即可.
(2)利用根与系数的关系得到x1+x2=1,x1x2=a,再由(x1+1)(x2+1)=-1得到a+1+1=-1,然后解关于a的一次方程即可.
试题解析:(1)根据题意得△=1-4a=-4a+1≥0,
解得a≤
;
(2)根据题意得x1+x2=1,x1x2=a,
而(x1+1)(x2+1)=-1,
即x1x2+x1+x2+1=-1,
所以a+1+1=-1,
解得a=-3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某文化用品商店在开学初用2000元购进一批学生书包,按每个120元出售,很快销售一空,于是商店又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元,仍按120元出售,最后剩下4个按八折卖出,这笔生意该店共盈利多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB的度数.
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知方程8x﹣y=10,用x表示y的式子为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣2,﹣1),B(﹣4,1),C(﹣3,3).△ABC关于原点O对称的图形是△A1B1C1.
(1)画出△A1B1C1;
(2)BC与B1C1的位置关系是 ,AA1的长为 ;
(3)若点P(a,b)是△ABC一边上的任意一点,则点P经过上述变换后的对应点P1的坐标可表示为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连结BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠ACE=∠DBC其中结论正确的个数有( )

A. 4 B. 3 C. 2 D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】若用同一种正多边形瓷砖铺地面,不能密铺地面的正多边形是( )
A.正八边形
B.正六边形
C.正四边形
D.正三边形
相关试题