【题目】(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB的度数.
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
![]()
参考答案:
【答案】(1)60°;(2)∠AEB=90°AE= BE+2CM.
【解析】解:(1)∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=60°﹣∠DCB =∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE为等边三角形,
∴∠CDE=∠CED=60°.
∵点A,D,E在同一直线上,
∴∠ADC=120°,
∴∠BEC=120°.
∴∠AEB=∠BEC﹣∠CED=60°.
(2)
∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°
∴CA=CB,CD=CE.
且∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴AD=BE,∠ADC=∠BEC.
∵△DCE为等腰直角三角形,
∴∠CDE=∠CED=45°.
∵点A,D,E在同一直线上,
∴∠ADC=135°,
∴∠BEC=135°.
∴∠AEB=∠BEC﹣∠CED=90°.
∵CD=CE,CM⊥DE,
∴DM=ME.
∵∠DCE=90°,
∴DM=ME=CM.
∴AE=AD+DE=BE+2CM.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各组线段能组成一个三角形的是( ).
A.3cm,3cm,6cmB.2cm,3cm,6cm
C.5cm,8cm,12cmD.4cm,7cm,11cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE
AC于点E,Q为BC延长线上一点,取PA=CQ,连接PQ,交AC于M,则EM的长为_________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某文化用品商店在开学初用2000元购进一批学生书包,按每个120元出售,很快销售一空,于是商店又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元,仍按120元出售,最后剩下4个按八折卖出,这笔生意该店共盈利多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知方程8x﹣y=10,用x表示y的式子为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的方程x2﹣x+a=0有实根.
(1)求a的取值范围;
(2)设x1、x2是方程的两个实数根,且满足(x1+1)(x2+1)=﹣1,求实数a的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣2,﹣1),B(﹣4,1),C(﹣3,3).△ABC关于原点O对称的图形是△A1B1C1.
(1)画出△A1B1C1;
(2)BC与B1C1的位置关系是 ,AA1的长为 ;
(3)若点P(a,b)是△ABC一边上的任意一点,则点P经过上述变换后的对应点P1的坐标可表示为 .

相关试题