【题目】甲、乙两座仓库分别有农用车12辆和6辆.现在需要调往A县10辆,需要调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元;从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.
(1)设乙仓库调往A县农用车x辆,先填好下表,再写出总运费y关于x的函数关系式;
![]()
(2)若要求总运费不超过900元,问共有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少元?
参考答案:
【答案】(1)甲往A:10-x,甲往B:2+x,乙往A:x,乙往B:6-x,
;(2)3;(3)860,方案见试题解析.
【解析】
试题(1)若乙仓库调往A县农用车x辆,那么乙仓库调往B县农用车、甲给A县调农用车、以及甲县给B县调车数量都可表示出来,然后依据各自运费,把总运费表示即可;
(2)若要求总运费不超过900元,则可根据(1)列不等式求解;
(3)在(2)的基础上,求出最低运费即可.
试题解析:(1)若乙仓库调往A县农用车x辆(x≤6),则乙仓库调往B县农用车6﹣x辆,A县需10辆车,故甲给A县调农用车10﹣x辆,那么甲县给B县调车x+2辆,根据各个调用方式的运费可以列出方程如下:
,化简得:
(0≤x≤6);
(2)总运费不超过900,即y≤900,代入函数关系式得
,解得x≤2,所以x=0,1,2,
即如下三种方案:1.甲往A:10辆;乙往A:0辆甲往B:2辆;乙往B:6辆,
2.甲往A:9;乙往A:1甲往B:3;乙往B:5,
3.甲往A:8;乙往A:2甲往B:4;乙往B:4;
(3)要使得总运费最低,由
(0≤x≤6)知,x=0时y值最小为860,
即上面(2)的第一种方案:甲往A:10辆;乙往A:0辆;甲往B:2辆;乙往B:6辆,总运费最少为860元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为( )
A.(﹣3,7)
B.(﹣1,7)
C.(﹣4,10)
D.(0,10) -
科目: 来源: 题型:
查看答案和解析>>【题目】请从以下两个小题中任选一题作答,若多选,则按所选的第一题计分.
A.正五边形的一个外角的度数是 .
B.比较大小:2tan71°
(填“>”、“=”或“<”) -
科目: 来源: 题型:
查看答案和解析>>【题目】小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路去上学,她先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变),图中的折线ABCDE表示小丽和学校之间的距离y(米)与她离家的时间x(分)之间的函数关系.
(1)求小丽步行的速度及学校与公交站台乙之间的距离;
(2)当8≤x≤15时,求y与x之间的函数解析式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,
∠A+∠2=90°.求证:AB∥CD.
证明:如图,
∵∠1=∠B(已知)
∴CE∥BF(同位角相等,两直线平行)
______________
∴∠AFC+∠2=90°(等式性质)
∵∠A+∠2=90°(已知)
∴∠AFC=∠A(同角或等角的余角相等)
∴AB∥CD(内错角相等,两直线平行)
请你仔细观察下列序号所代表的内容:
①∴∠AOE=90°(垂直的定义)
②∴∠AFB=90°(等量代换)
③∵AF⊥CE(已知)
④∵∠AFC+∠AFB+∠2=180°(平角的定义)
⑤∴∠AOE=∠AFB(两直线平行,同位角相等)
横线处应填写的过程,顺序正确的是( )

A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y1,x1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,,这样依次得到各点.若A2020的坐标为(3,2),设A1(x,y),则xy的值是( )
A.-5B.-1C.3D.5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,∠BAC=45°,BC=2,D是线段BC上的一个动点,点D是关于直线AB、AC的对称点分别为M、N,则线段MN长的最小值是 .

相关试题