【题目】如图,一次函数
分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.
![]()
参考答案:
【答案】(1)y=x+
x+2;(2)t=2时,MN有最大值4;(3)(0,6),(0,2)或(4,4).
【解析】试题分析:
(1)先由直线
分别交y轴、x轴于点A、B这一条件求出点A、B的坐标,将所求坐标代入抛物线
列出关于
的值即可得到所求抛物线的解析式;
(2)如图1,由题意可知点M的横坐标为t,根据点M在直线
上,点N在(1)中所求抛物线上,可用含“t”的代数式表达出点M、N的坐标,结合第一象限中,点N在点M的上方,可用含“t”的代数式表达出MN的长,把所得式子配方,即可得到所求答案;
(3)由(2)中答案可得求得对应的点A、M、N的坐标,如图2分析可知点D有三种可能,其中两种情况点D在y轴上,结合AD=MN,即可求得两个符合要求的点D1、D2的坐标;由图可知第三个符合要求点D就是直线D1N和D2M的交点,求出两直线的解析式联立成方程组,解方程组即可求得第三个符合要求的点D的坐标.
试题解析:
(1)∵
分别交y轴、x轴于A.、B两点,
∴A、B点的坐标为:A(0,2),B(4,0),
将x=0,y=2代入y=x+bx+c得c=2,
将x=4,y=0,c=2代入y=x+bx+c得0=16+4b+2,解得b=
,
∴抛物线解析式为:
,
(2)如图1,由题意可知,直线MN即是直线
,
∵点M在直线
上,点N在抛物线
上,
∴点M、N的坐标分别为
、
,
∵在第一象限中,点N在点M的上方,
∴MN=
,
∴当
时,MN最长=4;
![]()
(3)由(2)可知,A(0,2),M(2,1),N(2,5).
以A. M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如图2所示:
![]()
(i)当D在y轴上时,设D的坐标为(0,a)
由AD=MN,得|a2|=4,解得a1=6,a2=2,
从而D1为(0,6)或D2(0,2),
(ii)当D不在y轴上时,由图可知D3为D1N与D2M的交点,
由D1、D2、M、N的坐标可求得直线D1N的解析式为:y=
x+6,直线D2M的解析式为:y=
x2,
由
解得
,
∴D3的坐标为:(4,4),
综上所述,所求的D点坐标为(0,6),(0,2)或(4,4).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某种小商品的成本价为10元/kg,市场调查发现,该产品每天的销售量w(kg)与销售价x(元/kg)有如下关系w=﹣2x+100,设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式;
(2)当售价定为多少元时,每天的销售利润最大?最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.

(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】列分式方程解应用题
元旦期间,甲、乙两位好友约着一起开两辆车自驾去黄山玩,其中面包车为领队,小轿车紧随其后,他们同时出发,当面包车行驶了200千米时,发现小轿车只行驶了180千米,若面包车的行驶速度比小轿车快10千米/小时,请问:
(1)小轿车和面包车的速度分别多少?
(2)当小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面100千米的地方碰头,他们正好同时到达,请问小轿车需要提速多少千米/小时?
(3)小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面s千米的地方碰头,他们正好同时到达,请问小轿车提速 千米/小时.(请你直接写出答案即可)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:
如图1,已知:在
中,
,
,直线m经过点A,
直线m,
直线m,垂足分别为点D、
试猜想DE、BD、CE有怎样的数量关系,请直接写出;
组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将
中的条件改为:在
中,
,D、A、E三点都在直线m上,并且有
其中
为任意锐角或钝角
如果成立,请你给出证明;若不成立,请说明理由.
数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是
角平分线上的一点,且
和
均为等边三角形,D、E分别是直线m上A点左右两侧的动点
、E、A互不重合
,在运动过程中线段DE的长度始终为n,连接BD、CE,若
,试判断
的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面的证明过程:
已知:如图,∠D=110°,∠EFD=70°,∠1=∠2,
求证:∠3=∠B

证明:∵∠D=110°, ∠EFD=70°(已知)
∴∠D+∠EFD=180°
∴AD∥______( )
又∵∠1=∠2(已知)
∴_____∥BC ( 内错角相等,两直线平行)
∴EF∥_____ ( )
∴∠3=∠B(两直线平行,同位角相等)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF,②GH=
BC,③BF=2OD,④∠CHF=45°.正确结论的个数为( )
A.4个B.3个C.2个D.1个
相关试题