【题目】如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.
![]()
![]()
(1)求此抛物线的解析式;
(2)求AD的长;
(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.
参考答案:
【答案】(1)y=
;(2)AD=5;(3)(5,
)
【解析】
试题分析:(1)利用矩形的性质和B点的坐标可求出A点的坐标,再利用待定系数法可求得抛物线的解析式;(2)设AD=x,利用折叠的性质可知DE=AD,在Rt△BDE中,利用勾股定理可得到关于x的方程,可求得AD的长;(3)由于O、A两点关于对称轴对称,所以连接OD,与对称轴的交点即为满足条件的点P,利用待定系数法可求得直线OD的解析式,再由抛物线解析式可求得对称轴方程,从而可求得P点坐标.
试题解析:(1)∵四边形ABCD是矩形,B(10,8),
∴A(10,0), 又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得
,解得
, ∴抛物线的解析式为y=﹣
x2+
x;
(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8, 设AD=x,则ED=x,BD=AB﹣AD=8﹣x,
在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5, ∴AD=5;
(3)∵y=﹣
x2+
x, ∴其对称轴为x=5, ∵A、O两点关于对称轴对称, ∴PA=PO,
当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,
如图,连接OD交对称轴于点P,则该点即为满足条件的点P,
![]()
由(2)可知D点的坐标为(10,5),
设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=
, ∴直线OD解析式为y=
x,
令x=5,可得y=
, ∴P点坐标为(5,
).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CD是△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处.
(1)求∠A的度数;
(2)若
,求△AEC的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2014年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2016年底三年共累计投资9.5亿元人民币建设廉租房.若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2016年底共建设了多少万平方米的廉租房?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列图形中有稳定性的是( )
A.正方形
B.长方形
C.直角三角形
D.平行四边形 -
科目: 来源: 题型:
查看答案和解析>>【题目】一辆货车从超市(O点)出发,向东走2km到达小李家(A点),继续向东走4km到达小张家(B点),然后又回头向西走10km到达小陈家(C点),最后回到超市.
(1)以超市为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C、O的位置;
(2)小陈家(C点)距小李家(A点)有多远?
(3)若货车每千米耗油0. 5升,这趟路货车共耗油多少升?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某餐厅中,一张桌子可坐6人,有如图所示的两种摆放方式:

(1)当有n张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌.若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:全部商品按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).

(1)当购买乒乓球的盒数为x盒时,在甲店购买需付款 元?在乙店 购买需付款 元?(用含x的代数式表示)
(2)当购买乒乓球盒数为10盒时,去哪家商店购买较合算?请计算说明.
(3) 当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付多少元?
相关试题