【题目】已知抛物线与x轴交于A(6,0)、B(
,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.
![]()
(1)求此抛物线的解析式;
(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.
①当点F为M′O′的中点时,求t的值;
②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.
参考答案:
【答案】(1)
;(2)①1;②t=2时,EH最大值为
.
【解析】
试题分析:(1)设抛物线解析式为
,把点M(1,3)代入即可求出a,进而解决问题.
(2))①如图1中,AC与OM交于点G.连接EO′,首先证明△AOC∽△MNO,推出OM⊥AC,在RT△EO′M′中,利用勾股定理列出方程即可解决问题.
②由△GHE∽△AOC得
=
=
,所以EG最大时,EH最大,构建二次函数求出EG的最大值即可解决问题.
试题解析:(1)设抛物线解析式为
,把点M(1,3)代入得a=
,∴抛物线解析式为
,∴
.
(2)①如图1中,AC与OM交于点G.连接EO′.∵AO=6,OC=2,MN=3,ON=1,∴
=3,∴
,∵∠AOC=∠MON=90°,∴△AOC∽△MNO,∴∠OAC=∠NMO,∵∠NMO+∠MON=90°,∴∠MON+∠OAC=90°,∴∠AGO=90°,∴OM⊥AC,∵△M′N′O′是由△MNO平移所得,∴O′M′∥OM,∴O′M′⊥AC,∵M′F=FO′,∴EM′=EO′,∵EN′∥CO,∴
,∴
,∴EN′=
(5﹣t),在RT△EO′M′中,∵O′N′=1,EN′=
(5﹣t),EO′=EM′=
,∴
,∴t=1.
②如图2中,∵GH∥O′M′,O′M′⊥AC,∴GH⊥AC,∴∠GHE=90°,∵∠EGH+∠HEG=90°,∠AEN′+∠OAC=90°,∠HEG=∠AEN′,∴∠OAC=∠HGE,∵∠GHE=∠AOC=90°,∴△GHE∽△AOC,∴
,∴EG最大时,EH最大,∵EG=GN′﹣EN′=
=
=
,∴t=2时,EG最大值=
,∴EH最大值=
,∴t=2时,EH最大值为
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知代数式x-2y+1的值是3,则代数式2x﹣4y的值是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形的一个外角是60°,则这个三角形的底角等于______°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.
(1)四棱柱有 个面, 条棱, 个顶点;
(2)六棱柱有 个面, 条棱, 个顶点;
(3)由此猜想n棱柱有 个面, 条棱, 个顶点.

-
科目: 来源: 题型:
查看答案和解析>>【题目】不等式4x﹣8<0的解集是______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.
(1)画出△A1B1C,直接写出点A1、B1的坐标;
(2)求在旋转过程中,△ABC所扫过的面积.

相关试题