【题目】如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.
(1)四棱柱有 个面, 条棱, 个顶点;
(2)六棱柱有 个面, 条棱, 个顶点;
(3)由此猜想n棱柱有 个面, 条棱, 个顶点.
![]()
参考答案:
【答案】(1)6,12,8;(2)8,18,12;(3)(n+2),3n,2n.
【解析】试题分析:结合已知三棱柱、四棱柱、五棱柱和六棱柱的特点,可知
棱柱一定有
个面,
条棱和
个顶点.
试题解析:(1)四棱柱有6个面,12条棱,8个顶点;
(2)六棱柱有8个面,18条棱,12个顶点;
(3)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.
故答案为:(1)6,12,8;(2)8,18,12;(3)![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知代数式x-2y+1的值是3,则代数式2x﹣4y的值是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形的一个外角是60°,则这个三角形的底角等于______°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线与x轴交于A(6,0)、B(
,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.
(1)求此抛物线的解析式;
(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.
①当点F为M′O′的中点时,求t的值;
②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】不等式4x﹣8<0的解集是______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.
(1)画出△A1B1C,直接写出点A1、B1的坐标;
(2)求在旋转过程中,△ABC所扫过的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】⑴如果等腰三角形两边长是6和3,那么它的周长是_______; ⑵已知等腰三角形的一个外角等于
,则它的顶角度数为_______.
相关试题