【题目】好学小东同学,在学习多项式乘以多项式时发现:(
x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为:
x2x3x=3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:
×5×(-6)+2×(-6)×4+3×4×5=-3,即一次项为-3x.
请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.
(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为_____.
(2)(
x+6)(2x+3)(5x-4)所得多项式的二次项系数为_______.
(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;
(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=_____.
参考答案:
【答案】(1)-11(2)63.5(3)a=-3(4)2021.
【解析】
(1)求一次项系数,用每个括号中一次项的系数分别与另外两个括号中的常数项相乘,最后积相加即可得出结论.
(2)求二次项系数,还有未知数的项有
x、2x、5x,选出其中两个与另一个括号内的常数项相乘,最后积相加即可得出结论.
(3)先根据(1)(2)所求方法求出一次项系数,然后列出等式求出a的值.
(4)根据前三问的规律即可计算出第四问的值.
解:(1)由题意可得(x+2)(3x+1)(5x-3)一次项系数是:1×1×(-3)+3×2×(-3)+5×2×1=-11.
(2)由题意可得(
x+6)(2x+3)(5x-4) 二次项系数是:
.
(3)由题意可得(x2+x+1)(x2-3x+a)(2x-1)一次项系数是:
1×a×(-1)+(-3)×1×(-1)+2×1×a = a+3=0
∴a=-3.
(4)通过题干以及前三问可知:一次项系数是每个多项式的一次项分别乘以其他多项式常数项然后结果相加可得.
所以(x+1)2021一次项系数是:a2020=2021×1=2021.
故答案为:(1)-11(2)63.5(3)a=-3(4)2021.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,将射线Ox按逆时针方向旋转β,得到的射线Oy,如果P为射线Oy上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为(a,β).例如,图②中,如果OM=8,∠xOM=110°,那么点M在平面内的位置记为M(8,110°),根据图形,解答下列问题:
(1)如图③,如果点N在平面内的位置记为N(6,30°),那么ON=__ __,∠xON= .
(2)如果点A,B在平面内的位置分别记为A(5,30°),B(12,120°),求A,B两点之间的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】第1个等式:1-
=
×
第2个等式:(1-
)(1-
)=
×
第3个等式:(1-
)(1-
)(1-
)=
×
第4个等式:(1-
)(1-
)(1-
)(1-
)=
×
第5个等式:(1-
)(1-
)(1-
)(1-
)(1-
)=
×
······
(1) 写出第6个等式;
(2) 写出第n个等式(用含n的等式表示),并予以证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)已知两点A(3,m),B(2m,4),且A和B到x轴距离相等,求B点坐标.
(2)点A在第四象限,当m为何值时,点A(m+2,3m5)到x轴的距离是它到y轴距离的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.
(1)若∠ABC=70°,则∠NMA的度数是 度.
(2)若AB=8cm,△MBC的周长是14cm.
①求BC的长度;
②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(8分)如图所示,在四边形ABCD中,AB=2
,BC=2,CD=1,AD=5,且∠C=90°,求四边形ABCD的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把矩形ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.若AE=a,AB=b,BF=c,请写出a,b,c之间的一个等量关系为__________.

相关试题