【题目】设a,b,c是△ABC的三条边,关于x的方程
x2+
x+c-
a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.
(1)试判断△ABC的形状;
(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.
参考答案:
【答案】(1)∵
x2+
x+c-
a=0有两个相等的实数根,
∴△=(
)2-4×
(c-
a)=0,
整理得a+b-2c="0" ①,
又∵3cx+2b=2a的根为x=0,
∴a="b" ②,
把②代入①得a=c,
∴a=b=c,
∴△ABC为等边三角形;
(2)a,b是方程x2+mx-3m=0的两个根,
∴方程x2+mx-3m=0有两个相等的实数根
∴△=m2-4×(-3m)=0,
即m2+12m=0,
∴m1=0,m2=-12.
当m=0时,原方程的解为x=0(不符合题意,舍去),
∴m=-12.
【解析】
(1)因为方程有两个相等的实数根,即△=0,由△=0可以得到一关于a,c的方程,再结合方程3cx+2b=2a的根为x=0,代入即可得到一关于a,b的方程,联立即可求出a,b,c的关系.
(2)根据(1)中求出a,b的值,可以关于m的方程,解方程即可求出m.
解:
∵
有两个相等的5t实数根,
∴
,
整理得
①,
又∵
的根为
,
∴
②,
把②代入①得
,
∴
,
∴
为等边三角形;
,
是方程
的两个根,
∴方程
有两个相等的实数根
∴
,
即
∴
,
.
当
时,原方程的解为
(不符合题意,舍去),
∴
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是

A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小明用三个等腰三角形(图中①②③)拼成了一个平行四边形ABCD,且
,则
=_____ 度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】现场学习题:
问题背景:
在△ABC中,AB、BC、AC三边的长分别为
、
、
,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.

(1)请你将△ABC的面积直接填写在横线上. .
思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法,若△ABC三边的长分别为
a,2
a、
a(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是: .探索创新:
(3)若△ABC三边的长分别为
、
、
(m>0,n>0,m≠n),请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为: . -
科目: 来源: 题型:
查看答案和解析>>【题目】某课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我们定义:如图1、图2、图3,在
中,把
绕点
顺时针旋转
得到
,把
绕点
逆时针旋转
得到
,连接
,当
时,我们称
是
的“旋补三角形”,
边
上的中线
叫做
的“旋补中线”,点
叫做“旋补中心”.图1、图2、图3中的
均是
的“旋补三角形”.
(1)①如图2,当
为等边三角形时,“旋补中线”
与
的数量关系为:
______
;②如图3,当
,
时,则“旋补中线”
长为______.(2)在图1中,当
为任意三角形时,猜想“旋补中线”
与
的数量关系,并给予证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】在数学兴趣小组的活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2
的正方形AEFG按图①位置放置,AD与AE在同一直线上,AB与AG在同一直线上.⑴小明发现DG⊥BE,请你帮他说明理由.
⑵如图②,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.

相关试题