【题目】我市某中学为备战省运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩分成四组,绘成了如下尚不完整的统计图表.

组别

成绩

组中值

频数

第一组

90≤x<100

95

4

第二组

80≤x<90

85

m

第三组

70≤x<80

75

n

第四组

60≤x<70

65

21

根据图表信息,回答下列问题:
(1)参加活动选拔的学生共有人;表中m= , n=
(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;
(3)将第一组中的4名学生记为A、B、C、D,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A和B的概率.


参考答案:

【答案】
(1)50;10;15
(2)解: = =74.4
(3)解:将第一组中的4名学生记为A、B、C、D,现随机挑选其中两名学生代表学校参赛,所有可能的结果如下表:

A

B

C

D

A

(B,A)

(C,A)

(D,A)

B

(A,B)

(C,B)

(D,B)

C

(A,C)

(B,C)

(D,C)

D

(A,D)

(B,D)

(C,D)

由上表可知,总共有12种结果,且每种结果出现的可能性相同.恰好选中A和B的结果有2种,其概率为= =


【解析】解:(1)∵第一组有4人,所占百分比为8%,
∴学生总数为:4÷8%=50;
∴n=50×30%=15,
m=50﹣4﹣15﹣21=10.
所以答案是50,10,15;
【考点精析】关于本题考查的扇形统计图和列表法与树状图法,需要了解能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率才能得出正确答案.

关闭